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ABSTRACT

In this work, we consider illumination sensing in a light emitting
diode (LED) based illumination system that normally consists of
a large number of LEDs. Illumination sensing is used in order to
facilitate the control of such system whose complexity, due to the
large number of LEDs, can be quite high. In this paper, key re-
quirements, i.e. accuracy and speed, on illumination sensing are de-
scribed. Furthermore, we present a filter bank sensor structure based
on frequency division multiplexing. The design of the filter response
is discussed in the context of supporting maximum number of LEDs,
while the key requirements on illumination sensing are satisfied. In
particular, it is shown that, through the use of the filter with a trian-
gular filter response, a large number of LEDs can be supported in the
presence of frequency offsets in a practical range.

Index Terms— Illumination Sensing, Filter Banks, Frequency
Division Multiplexing, Nyquist-1 Functions

1. INTRODUCTION

Due to the rapid development of solid state lighting technologies,
considerable research interest has been devoted to light emitting
diode (LED) based illumination systems. The considered systems
normally consist of a large number of spatially distributed LEDs,
which can be used to provide localized and dynamic lighting effects.
To this end, the output illumination level of each LED is flexible and
can be configured easily such that a desired lighting effect can be
achieved at the location of interest, called target location.

Due to the large number of light sources, however, the complex-
ity of calibrating and controlling such system can be quite high. In
order to facilitate the control of such a high complexity system and
to achieve engaging lighting effects, it is essential to accurately es-
timate the illumination contribution of each individual LED at the
target location. This process is named illumination sensing [1] and
is the focus of this paper. Further, for the purpose of illumination
sensing, a sensor is located at the target location.

It is known that the illumination signal from each LED at the
target location typically consists of repeatedly transmitted illumina-
tion pulses, as illustrated in Fig. 1, for the purpose of dimming the
light [2]. The amplitude of the pulse, denoted by aI,i, is the illumi-
nance due to the ith LED. The value of aI,i is fixed and determined
by the optical output power of each LED and the free-space optical
channel attenuation [1]. The duty factor of the pulse, denoted by pi

for the ith LED, in contrast, can be changed easily by a central con-
troller. Through the setting of pi, the output illumination level for
each LED can be controlled individually in order to achieve desired
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pi/fi

aI,i

Fig. 1. Illumination pulse train due to the ith LED. The amplitude
of the corresponding electrical pulse train equals ai.

lighting effects at the target location. The illumination contribution
of the ith LED is characterized by aI,ipi. Given the knowledge of
each pi at the central controller, it is thus sufficient to estimate aI,i
for each i. Furthermore, there are two key application requirements
to the sensing process, viz. accuracy and speed, which will be elab-
orated in Section 2.

The illumination pulses from all LEDs simply sum up together
at the target location. It is, however, difficult and expensive, if not
impossible, to distinguish the signals from different LEDs optically.
Instead, an electronic solution is desirable. Therefore, a photodiode
is used to obtain an electrical pulse train. The electrical pulse train
is of similar shape as that illustrated in Fig. 1, except that the am-
plitude is now the electrical current, denoted by ai for the ith LED.
Given that the conversion ratio ai/aI,i is known, we only need to
estimate ai for each i. To this end, one may adapt or shape the il-
lumination waveform of Fig. 1 individually for each LED, in such a
manner that the contributions can be disentangled electronically. For
instance, the illumination pulses in Fig. 1 can be intermitted with de-
terministic pulse trains that serve as identifiers for the LEDs [1]. In
such an approach, however, reliable recognition of the distinct iden-
tifiers requires complex procedures to maintain synchronism among
the LEDs and between the LEDs and the sensor. In this paper, in
contrast, we consider a much simpler asynchronous approach that
is based on frequency division multiplexing (FDM). Here all LEDs
are operated at different yet fixed fi for the illumination pulse trains,
with small yet easily discernible spacing, denoted by Δf , between
the different frequencies. The idea of setting the illumination pulse
trains of the LEDs at distinct frequencies was proposed in [3]. The
research challenges in this paper, however, are quite different from
those in [3], since this paper focuses on a much higher number of
LEDs and a much higher speed of illumination sensing.

The rest of the paper is organized as follows. Key system char-
acteristics of the FDM approach and the key requirements on illu-
mination sensing are presented in Section 2. Section 3 presents a
filter bank sensor structure. Design of the filter bank is presented in
Section 4. Performance evaluation is provided in Section 5. Finally,
Section 6 concludes this paper.
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2. SYSTEMCHARACTERISTICS

The electrical signal received at a sensor can be written as

y(t) =
L∑

i=1

yi(t) + v(t) =
L∑

i=1

∞∑
n=−∞

aihi(t− ti −
n

fi

) + v(t),

(1)
where L is the number of LEDs, yi(t) denotes the electrical signal
due to the ith LED, v(t) is the noise, and the pulse shape hi(t) is
approximately rectangular with the exact shape determined by the
on- and off-switch characteristics of the LEDs [1]. The duty cycle
pi of each pulse train is set on a logarithmic scale [4] and we have
pmin = 0.001 ≤ pi ≤ pmax = 0.97307. Here, we take the sec-
ond largest value from [4] as pmax since the FDM scheme cannot
work at pi = 1. Further, regarding the fundamental frequency, we
have fi ≥ 75 Hz in order to have no visible flicker from the LEDs.
In order to maintain hi(t) to be approximately rectangular for any
pi, we should also have pmin

fi
≥ τon + τoff ≈ 250 ns, where τon

and τoff denote the reaction time of the LEDs during on- and off-
switch operations [2]. Hence we get fi ≤ 4 kHz. Then we take
the frequency range of fi to be 2 kHz to 4 kHz, i.e. the bandwidth
W = 2 kHz, such that there is no possible overlap between fi and
the harmonics of any fm wherem �= i. Moreover, frequency assign-
ment is undertaken such that there is a uniform spacingΔf between
the neighboring frequencies, i.e. L = W/Δf . The noise term v(t)
in (1) is the sum of the electronics and shot noises. The double-sided
power spectrum density of v(t) is denoted by N0/2. For a practical
indoor environment and a photodiode with an area of 10 mm2, N0

is typically in the order of 10−24 ampere2/Hz. The value of ai is,
by contrast, in the order of 10−6 ampere. Therefore, the noise is
considered negligible in this paper. Finally, the term ti denotes the
initial phase shift of the signal and is unknown to the sensor. Now,
we would like to estimate ai for each i from y(t). As introduced in
Section 1, there are two key requirements:

1) Accuracy: It is known that the human visual system continu-
ously adapts itself according to the background or environment light-
ing. Similarly, the visibility of an estimation error depends on the
real illuminance level. Hence, in this paper, to gauge accuracy in
illumination sensing, we normalize the estimation error with respect
to the real illuminance. Since the illumination contribution of the ith
LED is equivalently characterized by aipi, we propose to character-
ize the requirement on the estimation of ai by

ξi � 10 log10

(
|âi − ai|pi/(

∑L

m=1 ampm)
)
, (2)

where âi denotes the estimated value for ai. Further, from the ex-
perimental results in [5], we can conclude that, when ξi is less than
−20 dB, the estimation error is no longer visible to human eyes,
irrespective of the circumstances.

2) Speed: We may consider the tolerance time between the mo-
ment when a user pushes a button and that when the illumination
level of a lamp is changed and enters a stable state. Therefore, a re-
sponse time, denoted by T , that is significantly below one second, is
expected. More specifically, in this paper, we require T ≤ 0.1 s.

When the above two requirements are satisfied, it is desirable to
be able to support as many LEDs as possible, since more LEDs will
provide more degrees of freedom to create flexible lighting effects.

3. SENSOR SIGNAL PROCESSING

The main challenge for the sensor processing is to separate the sig-
nals from different LEDs and then to estimate each ai. In the FDM

y(t)

cos(2πfit)

sin(2πfit)

g(t)

g(t)

(·)2

(·)2

âi

π
sin(πpi)√

(·)

Fig. 2. Block diagram of the filter bank estimator.

scheme, the spectrum of yi(t) can be obtained as

Yi(f) =
∑∞

n=−∞ aifiHi(f)e−j2πftiδ(f − nfi), (3)

where δ(·) denotes the Kronecker delta function and Hi(f) is the
Fourier transform of hi(t), Hi(f) =

∫∞
−∞

hi(t)e
−j2πftdt. There-

fore, Yi(f) consists of multiple lines at frequencies nfi where n =
0,±1,±2, · · · . In this paper, we present an approach that is based
only on the fundamental frequency components, i.e. n = ±1. The
reasons for taking only n± 1 are two-fold. First, each fi is distinct
while there is potential overlap in the higher harmonics of fi for dif-
ferent i. Secondly, it is already sufficient to estimate each ai from
the fundamental frequency component alone by âi = |Yi(fi)|

fiHi(fi)
=

π
sin(πpi)

|Yi(fi)|, where the second equality is because hi(t) is ap-
proximately a rectangular function with duty cycle pi.

In order to separate the signals from different LEDs, we consider
applying a bank of bandpass filters to y(t), followed by an envelope
detector. The filter response corresponding to the ith LED is denoted
byGi(f). Due to the uniform frequency spacingΔf between LEDs,
it is sufficient to design the filters such that Gi(f) = G(f − fi) +
G∗(−f−fi)whereG(f) is a lowpass filter and is identical for every
i. Further, we assume g(t), which is the inverse Fourier transform of
G(f), is a real-valued function, and thus G∗(−f) = G(f). Hence
we haveGi(f) = G(f − fi) + G(f + fi) and equivalently gi(t) =
2g(t) cos(2πfit). The envelope of the filtered signal y(t) ∗ gi(t),
where ∗ denotes the convolution operation, can then be written as∣∣∣ ∫ t

t−T
2y(φ)ej2πfiφg(t − φ)dφ

∣∣∣. More specifically, the estimated
value can be written as

âi = âi(t) =
π

sin(πpi)

∣∣∣
∫ t

t−T

y(φ)ej2πfiφg(t− φ)dφ
∣∣∣. (4)

The block diagram of the filter bank is then given in Fig. 2. The
support of g(t), i.e. the time interval when g(t) �= 0, determines the
period of time for the filter to generate a stable output after a user
enables a sensing operation. Therefore, the response time T of the
sensing operation is mainly determined by the support of g(t). In
the following, we thus assume the support of g(t) is 0 ≤ t ≤ T .

4. DESIGN OF THE FILTER RESPONSE

From (4), the performance of the illumination sensing is quite de-
pendent on the design of G(f). In this section, we hence consider
the design of G(f).

4.1. Ideal Case without Frequency Offsets

First, we assume there are no frequency inaccuracies in any fi. From
(1), (3) and (4), we get

âi=
∣∣∣aiG(0) +

∑
m�=i

am

sin(πpm)

sin(πpi)

ej2π(m−i)Δf t

ej2π(fmtm−fiti)
G((m− i)Δf )

∣∣∣

3190



where noise is neglected. Thus, the estimation error

|âi − ai|≤ai|G(0) − 1|+
∑
m�=i

am

sin(πpm)

sin(πpi)
|G((m− i)Δf )|.

Then, we can perfectly separate the signals from different LEDs, and
thus the optimum estimation performance can be achieved, if the fol-
lowing conditions on G(f) are satisfied.
Condition (a): G(0) = 1.
Condition (b): G(nΔf ) = 0 for n �= 0.
Condition (c): g(t) is real-valued with support 0 ≤ t ≤ T .
From the first two conditions, we obtain that G(f) is actually a
Nyquist-1 function of f , satisfying the Nyquist pulse shaping cri-
terion [6]. Therefore we have

∑
n

g(t + n/Δf ) = Δf . Thus the
minimum support of g(t) is 1/Δf , which is achieved when and only
when g(t) equals a rectangular function g(t) = 1

T
rect

(
t
T
− 1

2

)
,

where rect(t) = 1 if |t| ≤ 1/2 and rect(t) = 0 elsewhere. Hence,
we have T ≥ 1/Δf and L = W/Δf ≤ WT , with the equal-
ity achieved only by setting g(t) to be rectangular. In other words,
given the requirement on T , the rectangular function can support the
largest number of LEDs by Lmax = WT .

4.2. In the Presence of Frequency Offsets

In practice, there is always some frequency inaccuracy in fi. The
frequency offset equals εi � fi− f̄i (in Hz), where fi and f̄i denote
the actual and ideal fundamental frequency, respectively. The esti-
mation error can thus be obtained similarly to Section 4.1. Specif-
ically, without loss of generality, we focus on the estimation of a1,
the cost function (2) can be written as ξ1 ≤ 10 log10(ξ

b
1 + ξi1), and

ξb1 =
[
1 +

∑L

m=2 ampm

a1p1

]−1

(1− |G(ε1)|),

ξi1 =
1

πsinc(πp1)

∑L

m=2 am sin(πpm)|G((m− 1)Δf + εm)|∑L

m=1 ampm

which are named bias error and interference, respectively. Through
the first-order Taylor expansion, we get

G(ε1) = 1 + G′(0)ε1 + O(ε21),

G((m− 1)Δf + εm) = G′((m− 1)Δf )εm + O(ε2m),

where G′(f) denotes the derivative of G(f). Therefore, in order to
achieve an estimation performance that is robust against frequency
offsets, we can design G(f) to be a Nyquist-1 function with an ad-
ditional constraint
Condition (d): |G′(nΔf )| = 0, for any integer n.
In order to obtain such functions, we first write G(f) as G(f) =
G1(f)G2(f), where G1(f) is a Nyquist-1 function, which in gen-
eral does not satisfy Condition (d), and G2(f) is an arbitrary func-
tion that is differentiable at nΔf . Then

G′(nΔf ) = G1(nΔf )G′2(nΔf ) + G′1(nΔf )G2(nΔf )

= G′1(nΔf )G2(nΔf ), for n �= 0. (5)

Thus Condition (d) is satisfied for n �= 0 if and only if G2(nΔf ) =
0. Further, G2(0) = 1, otherwise G(f) is no longer a Nyquist-1
function. Hence, G2(f) is also a Nyquist-1 function. From Sec-
tion 4.1, the minimum support is 1/Δf for both g1(t) and g2(t),
which are inverse Fourier transform of G1(f) and G2(f), respec-
tively. The minimal support of g(t) is thus 2/Δf , which is achieved
when both g1(t) and g2(t) are rectangular functions, i.e. g(t) is a

triangular function. More specifically, g(t) = 2
T

rect( 2t
T
− 1

2
) ∗

2
T

rect( 2t
T
− 1

2
). It can be confirmed that this g(t) also satisfies

G′(0) = 0. Hence, Condition (d) is satisfied at any n. Therefore,
we have 2

Δf
≤ T or L ≤ 1

2
WT , where equality is achieved only by

setting g(t) to be the triangular function.
Note that the design of Nyquist-1 functions with a similar re-

quirement was also investigated in other application contexts and
under different optimization criteria [7–9]. To our best knowledge,
we are the first to give the constraint condition in the form of Con-
dition (d) and to show that the triangular function has the minimum
support, which is a desirable property for our application context.

We can of course further extend G(f) to be the product of three
or more Nyquist-1 functions, which allows a higher clock inaccu-
racy. In this paper, however, since we focus on a practical case of
100 ppm (parts per million) clock inaccuracy, the triangular func-
tion already suffices, as will be shown in Section 5.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the presented fil-
ter bank estimator, in terms of sensing accuracy and the number
of LEDs that can be supported. Here, we consider the case with
100 ppm clock inaccuracy for which |εi| ≤ 0.4 Hz. Then, in order
to make sure that the requirement on ξ1 ≤ −20 dB is satisfied in all
cases irrespective of {am}, {pm} and {εm}, we consider the worst
case conditions as follows.

From Section 4.2, we get 10 log10ξ
b
1≤10 log10(1 − |G(ε1)|),

which can be evaluated to be well below −20 dB for T ≤ 0.1 s.
Therefore, we can neglect ξb1 and focus on the term ξi1. Further, it is
in principle easier to suppress the frequency components which are
further apart from f1. Therefore,

ξi1 ≤ max
ε2

|G(Δf + ε2)|

sinc(πp1)

∑L

m=2 am sin(πpm)∑L

m=2 amπpm

≤ max
ε2

sinc(πpmin)

sinc(πpmax)
|G(Δf + ε2)|, (6)

because sinc(πp1) ≥ sinc(πpmax) and sin(πpm)
πpm

≤ sinc(πpmin) for
eachm. We thus have the worst case performance as

ξ1 = 15.6 + 10 log10 max
ε2=±0.4

|G(Δf + ε2)|. (7)

In particular, for the triangular function,

ξ1 = 15.6 + 10 log10 max
|ε2|=±0.4

|sinc2(1

2
Tπ(Δf + ε2))|. (8)

Here, we only consider ε2 = ±0.4, i.e. the worst case with respect to
ε2. We can evaluate the performance of the rectangular and triangu-
lar function as shown in Fig. 3. It can be seen that, at Δf = 20 Hz,
there is significant improvement of the estimation performance in
terms of ξ1, compared to the use of the rectangular function.

Further, from (8), we can obtain the tradeoff between L and
clock inaccuracy at given T as follows. At a very small clock inaccu-
racy, we know that L = 1

2
WT LEDs can be supported. Then, with a

larger clock inaccuracy, i.e. a larger range of ε2 in (8), the estimation
error in terms of ξ1 will also increase. There is a boundary value for
the clock inaccuracy when the requirement ξ1 ≤ −20 dB will no
longer be satisfied. Therefore, if the practical clock inaccuracy is
larger than the boundary value, we have to reduce T proportionally
such that T · maxε2 |ε2| does not increase. Thus, Δf = 2

T
has to

be in turn increased. Equivalently, L = W
Δf

= 1
2
WT is decreased.
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Fig. 3. The worst case ξ1 with respect to the frequency spacing, at
T = 0.1 s and 100 ppm clock inaccuracy.
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Fig. 4. The tradeoff between L and clock inaccuracy with T ≤ 0.1.

The boundary value for the clock inaccuracy can be obtained through
numerical evaluations. For instance, we can find that the boundary
value is 85 ppm to satisfy ξ1 ≤ −20 dB and T ≤ 0.1 second. There-
fore, we can obtain the tradeoff between the clock inaccuracy and L,
as shown in Fig. 4. From Fig. 4, we can also conclude that we can
support at maximum L = 85 LEDs at 100 ppm clock inaccuracy.

Moreover, the requirement on T might be relaxed in certain
practical application scenarios. Therefore, it is of high practical
value to investigate the tradeoff between L and T at 100 ppm clock
inaccuracy, provided that the condition on ξi ≤ −20 dB is always
satisfied. We know that, when T increases from zero, L is linearly
proportional to T by L = 1

2
WT . However, the increase of T will

result in a higher ξ1 at given clock inaccuracy from (8). When T
spans beyond Tmax = 0.085 s, the requirement on ξ1 ≤ −20 dB
will no longer be satisfied. Thus in practice, we would maintain
T = 0.085 s even if we are allowed to have a larger T . The tradeoff
between T and L for the triangular function at 100 ppm can thus
be obtained as depicted in Fig. 5. The tradeoff between T and L
for different clock inaccuracies can also be obtained similarly. From
Fig. 5, in order to accommodate more LEDs, we need to both in-
crease T and reduce the clock inaccuracy.

0 0.01 1 1000.001 0.1 10
100

101
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103

104

1 ppm

10 ppm

100 ppm
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Fig. 5. The number of LEDsL vs. response time T for the triangular
function at different clock inaccuracies.

6. CONCLUSION

In this paper, a filter bank sensor structure is presented for the pur-
pose of illumination sensing based on FDM in LED lighting systems.
The design of filter responses, in the context of supporting maximum
number of LEDs while satisfying the estimation requirements on
high speed and accurate illumination sensing, is also discussed. We
showed that a large number of LEDs can already be accommodated
with a simple FDM scheme and a filter-bank based sensor structure,
through the use of the triangular function as the filter response. We
also note that the filter with a triangular impulse response can be im-
plemented at a very low cost by applying the concatenation of two
sliding window integrators.
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