
A NOVEL ALGORITHM FOR CALCULATING THE QR DECOMPOSITION OF A
POLYNOMIAL MATRIX

Joanne Foster and Jonathon Chambers

Advanced Signal Processing Group,
Loughborough University, UK.

John McWhirter

Centre of Digital Signal Processing,
Cardiff University, UK.

ABSTRACT

A novel algorithm for calculating the QR decomposition (QRD) of
polynomial matrix is proposed. The algorithm operates by applying
a series of polynomial Givens rotations to transform a polynomial
matrix into an upper-triangular polynomial matrix and, therefore,
amounts to a generalisation of the conventional Givens method
for formulating the QRD of a scalar matrix. A simple example is
given to demonstrate the algorithm, but also illustrates two clear
advantages of this algorithm when compared to an existing method
for formulating the decomposition. Firstly, it does not demonstrate
the same unstable behaviour that is sometimes observed with the
existing algorithm and secondly, it typically requires less iterations
to converge. The potential application of the decomposition is high-
lighted in terms of broadband multi-input multi-output (MIMO)
channel equalisation.

Index Terms— Paraunitary matrix, polynomial matrix QR de-
composition, broadband MIMO channel equalisation.

1. INTRODUCTION

Polynomial matrices have many potential applications in the field
of control, but in recent years they have also been used extensively
in the areas of digital signal processing and communications. Ex-
amples of their applications include broadband adaptive sensor ar-
ray processing, the description of MIMO communication channels,
broadband subspace decomposition and also digital filter banks for
subband coding or data compression [1, 2]. In the context of this
paper, polynomial matrices are used to describe a convolutive mix-
ing process, which occurs, for example, when a set of signals arrive
at an array of sensors via multiple paths. This will result in the re-
ceived signals consisting of weighted and delayed versions of the
transmitted (source) signals. The channel matrix required to express
this takes the form of a polynomial matrix where each element is a
finite impulse response (FIR) filter.

If, instead, the received signals are instantaneously mixed, then
a matrix of scalars is sufficient to describe the mixing. In this sit-
uation, provided the channel matrix of the system is known and of
full rank, its QRD can be calculated, thus transforming the channel
matrix into an upper triangular matrix by means of a unitary transfor-
mation [3]. Decomposing the matrix in this way and exploiting the
upper triangular structure of the transformed matrix, the set of source
signals can be easily retrieved from the received signals using back
substitution [3]. This technique can be extended to broadband signal
processing, where polynomial matrices are now observed using the
novel algorithm, introduced in this paper, for calculating the QRD
of a polynomial matrix (PQRD). In this case the received signals
will have been distorted due to the effects of co-channel interference
(CCI) and multipath propagation, which then leads to intersymbol

interference (ISI). By using a suitable algorithm for calculating the
PQRD the observed CCI can be removed. The remaining ISI can
then be removed using a standard single-input single-output equal-
isation scheme [4]. Note that conventional methods for calculating
the QRD of a scalar matrix, such as Givens rotation [3], cannot di-
rectly be applied to determine the decomposition of a polynomial
matrix, where each element now consists of a series of coefficients.

The authors have previously proposed an algorithm for calcu-
lating this decomposition known as the the PQRD by steps (PQRD-
BS) algorithm [4, 5]. However, the algorithm proposed in this paper
typically requires fewer iterations to converge than the existing al-
gorithm. Furthermore, the existing PQRD-BS algorithm has demon-
strated unstable behaviour as the algorithm converges [6]. This be-
haviour does not occur with the algorithm proposed in this paper due
to the addition of an inverse delay matrix.

The remainder of this paper is organised as follows. Firstly, the
notation and terminology surrounding polynomial matrices are intro-
duced. A polynomial Givens rotation is then introduced, before a de-
tailed description of the PQRD by columns (PQRD-BC) algorithm.
Finally, through a simple example the capability and improved per-
formance of the PQRD-BC over the existing PQRD-BS algorithm is
confirmed by simulation for a particular polynomial matrix.

1.1. Polynomial Matrix Notation

A polynomial matrix is simply a matrix with polynomial elements
or can alternatively be thought of as a polynomial with matrix co-
efficients. In the context of this paper, the indeterminate variable of
each of the polynomial elements is z−1 used to represent a unit delay
and so a p × q polynomial matrix A(z) can be expressed as

A(z)=

t2∑
τ=t1

A(τ)z−τ=

⎡
⎢⎢⎢⎢⎣

a11(z) a12(z) · · · a1q(z)

a21(z)
. . .

...
...

. . .
...

ap1(z) · · · · · · apq(z)

⎤
⎥⎥⎥⎥⎦ (1)

where τ ∈ Z, t1 ≤ t2 and A(τ) ∈ R
p×q is the matrix containing

the coefficients of z−τ . It is assumed that all polynomial matrices
in this paper have real coefficients for simplicity. The polynomial
coefficient in the (j, k)th polynomial element of A(z) correspond-
ing to a delay of z−τ will be denoted as ajk(τ) and so the (j, k)th

polynomial element of the matrix can be expressed as

ajk(z) =

t2∑
τ=t1

ajk(τ)z−τ . (2)

This represents the impulse response of the propagation channel

3177978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

from the kth transmitter to the jth sensor. The order of the polyno-
mial matrix in equation (1) is by definition the quantity (t2 − t1).
The underline notation, for example in A(z), is used to denote a
polynomial, in this case, a matrix. This notation is also used to
represent a polynomial vector or scalar to avoid confusion with the
notation used for the z-transform of a variable. The set of polyno-
mial matrices with real coefficients is denoted by R

p×q , where p and
q define the number of rows and columns of the matrix respectively.

The paraconjugate of the polynomial matrix A(z) is defined to
be Ã(z) = AT (1/z) where (·)T denotes matrix transposition. The
tilde notation (̃·) will be used throughout this paper to denote para-
conjugation. A polynomial matrix A(z) ∈ R

p×p is said to be parau-
nitary if the following statement is true A(z)Ã(z) = Ã(z)A(z) =
Ip where Ip denotes the p× p identity matrix. Finally, the Frobenius
norm, or F-norm, of the polynomial matrix A(z) ∈ R

p×q is defined

as ‖A(z)‖
F

=

√√√√ t2∑
τ=t1

p∑
i=1

q∑
j=1

(aij(τ))2.

2. AN ELEMENTARY POLYNOMIAL GIVENS ROTATION

An elementary polynomial Givens rotation (EPGR) is a polynomial
matrix that can be applied to either a polynomial vector or matrix to
selectively zero one coefficient of a polynomial element. For sim-
plicity, a 2× 2 EPGR is firstly introduced. An EPGR takes the form
of a Givens rotation preceded by an elementary time shift matrix as
follows

G(t,θ)(z) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
1 0
0 zt

]
(3)

=

[
cos(θ) sin(θ)zt

− sin(θ) cos(θ)zt

]
. (4)

The aim of this matrix, when applied to a polynomial vector a(z) =

[a1(z), a2(z)]T ∈ R
2×1 as demonstrated by[

cos(θ) sin(θ)zt

− sin(θ) cos(θ)zt

] [
a1(z)
a2(z)

]
=

[
a′1(z)
a′2(z)

]
(5)

is to drive a specified coefficient from the polynomial element a2(z)
to zero. For example, to zero the coefficient of z−τ , i.e. a2(τ), then
the lag parameter in the EPGR matrix is set as t = τ and the rotation
angle θ is chosen such that

tan(θ) =
a2(τ)

a1(0)
, (6)

thus resulting in a′2(0) = 0. Furthermore, following the applica-
tion of the EPGR, the coefficient a′1(0) has increased in magnitude
squared such that (a′1(0))

2 = (a1(0))
2 + (a2(τ))2. Note that the

order of the vector a(z) will increase by |t| under the transforma-
tion. This is due to the elementary delay matrix incorporated in the
EPGR, which will apply a t-fold delay upon a2(z). The order of
the vector must therefore increase to accommodate all of the shifted
coefficients. The polynomial matrix G(t,θ)(z) is paraunitary and as
a consequence, the transformation demonstrated in equation (5) sat-

isfies
∥∥∥G(t,θ)(z)a(z)

∥∥∥
F

= ‖a(z)‖
F

.

An EPGR can easily be extended so that it can be applied to
a polynomial matrix A(z) ∈ R

p×q to drive a single coefficient of
one of the polynomial elements to zero. For example, suppose we
wish to drive the polynomial coefficient ajk(t) to zero. The appro-

priate EPGR required to do this, takes the form of a p × p identity
matrix with the exception of the four elements positioned at the in-
tersection of rows j and k with columns j and k. These elements
are given by the four elements of the EPGR G(t,θ)(z) demonstrated
in equation (4). This p × p matrix will be defined as G(j,k,t,θ)(z)
where the superscripts j and k have been added to denote the po-
sition of the coefficient, which will be driven to zero under the ap-
plication of the EPGR. The coefficients required for calculating the
rotation angle θ in equation (6) then correspond to a2(τ) = ajk(t)
and a1(0) = akk(0). Note that the scalar Givens rotation in (3)
can easily be extended to be applicable to polynomial matrices with
complex coefficients as demonstrated in [4, 5]. These matrices now
form the basis of the proposed algorithm for calculating the PQRD.

3. THE QR DECOMPOSITION OF A POLYNOMIAL
MATRIX

The PQRD By Columns (PQRD-BC) algorithm is a novel technique
for factorising a polynomial matrix into an upper triangular and a pa-
raunitary polynomial matrix. Let A(z) ∈ R

p×q, then the objective
of the algorithm is to calculate a paraunitary matrix Q(z) ∈ R

p×p

such that
Q(z)A(z) = R(z) (7)

where R(z) ∈ R
p×q is an upper triangular polynomial matrix. The

polynomial matrix Q(z) is computed as a series of EPGR matrices,
each one designed to drive a single coefficient of one of the polyno-
mial elements situated beneath the diagonal to be sufficiently small.

3.1. THE PQRD BY COLUMNS ALGORITHM

The algorithm operates as a series of ordered steps where at each
step, all coefficients relating to all polynomial elements beneath the
diagonal in one column of the matrix, are driven sufficiently small by
applying a series of EPGR matrices interspersed with inverse delay
matrices. The step process will be referred to as a column-step to
avoid confusion with the terminology used to describe the PQRD-
BS algorithm [4,5]. The algorithm begins the first column-step with
the first column of the matrix. The process to implement this first
step is now explained.

3.1.1. A Single Step of the Algorithm

The first column-step operates as an iterative process, where at each
iteration an EPGR is applied to A(z) to zero the coefficient with
maximum magnitude within any of the polynomial elements situ-
ated beneath the diagonal in the first column of the matrix. The first
iteration begins by locating the coefficient with maximum magni-
tude from the elements a21(z), . . . , ap1(z). Suppose this coefficient
is found to be aj1(t), i.e. the coefficient of z−t in the polynomial
element aj1(z). This coefficient will be referred to as the dominant
coefficient and if it is not unique then any of the dominant coeffi-
cients may be chosen.

Firstly, the rotation angle θ and the EPGR matrix G(j,1,t,θ)(z)
are calculated according to Section 2, such that when this matrix is
applied to the polynomial matrix A(z) as follows

A′(z) = G(j,1,t,θ)(z)A(z), (8)

the dominant coefficient aj1(t) will have been driven to zero.
Following the transformation a′j1(0) = 0 and also (a′11(0))

2 =

(a11(0))
2 + (aj1(t))

2.

3178

Next a paraunitary inverse delay matrix B(j,t)(z) is applied to
A′(z) as demonstrated by

A′′(z) = B(j,t)(z)A′(z). (9)

The matrix B(j,t)(z) ∈ R
p×p takes the form of an identity matrix

with the exception of the jth diagonal element which is z−t. The
application of this matrix will apply a t-fold delay to all elements in
the jth row of A′(z) such that a′′jk(τ +t) = a′jk(τ) for k = 1, . . . , q
and ∀τ ∈ Z. Note that the order of the matrix A′(z) must increase to
accommodate the delayed coefficients. In particular, the purpose of
this matrix is to ensure that the coefficients of z0 in A(z) are returned
to their original positions following the application of the EPGR. As
a result, this will stop the unstable behaviour that has been observed
in the PQRD-BS algorithm as it converges. The advantage of using
this additional inverse delay matrix is demonstrated in Section 4 by
means of a simple example.

This completes the first iteration of the first column-step of
the algorithm. Over this iteration the complete transformation per-
formed to zero the polynomial coefficient aj1(t) is of the form

A′′(z) = B(j,t)(z)G(j,1,t,θ)(z)A(z). (10)

This iterative process is repeated replacing A(z) with A′′(z) until all
coefficients associated with polynomial elements beneath the diago-
nal in the first column of the matrix are sufficiently small.

In practice it is often not feasible to zero all coefficients of the
polynomial elements beneath the diagonal in the column. Instead
the coefficients are driven to zero until the magnitude of all coeffi-
cients associated with these elements are sufficiently small and the
following stopping condition is satisfied

|aj1(t)| < ε (11)

for j = 2, . . . , p and ∀t ∈ Z where ε > 0 is a pre-specified small
value. Once this stopping condition has been satisfied, the overall
transformation performed in the first column-step of the algorithm is
of the form

A1(z) = Q1(z)A(z), (12)

where Q1(z) ∈ R
p×p is formed of a series of EPGRs interspersed

with inverse delay matrices and is therefore paraunitary by construc-
tion. Furthermore, following this column-step the first column of the
matrix A(z) will satisfy

Q1(z)

⎡
⎢⎢⎢⎣

a11(z)
a21(z)

...
ap1(z)

⎤
⎥⎥⎥⎦ ∼=

⎡
⎢⎢⎢⎣

a1
11(z)
0
...
0

⎤
⎥⎥⎥⎦ , (13)

where a1
11(z) is the first diagonal element of A1(z).

Convergence of a single column-step can now be easily deduced.
With every application of an EPGR, to zero the dominant coefficient
say ak1(t), the quantity (a11(0))

2 will increase by the magnitude
squared of the largest coefficient beneath the diagonal in the first
column. Furthermore, this quantity is bounded above by the squared
F-norm of the first column of A(z), i.e. the F-norm of the vector[
a11(z), . . . , ap1(z)

]T
, which remains constant throughout all iter-

ations of the algorithm. As (a11(0))
2 is monotonically increasing

and bounded above, over a series of EPGRs the condition set by
equation (11) is guaranteed and the column-step converges in this
respect.

3.1.2. The Algorithm

To begin a subsequent column-step, the iterative process outlined in
Section 3.1.1 is repeated, moving to the next column of the matrix,
i.e. the column positioned to the right of the column from the previ-
ous column-step. Following i column-steps, the transformation is of
the form

Ai(z) = Qi(z)A(z) (14)

where Qi(z) is formed of a series of EPGRs interspersed with in-
verse delay matrices and is therefore paraunitary by construction.
Note that over each iteration of each column-step of the algorithm,
the order of the matrices Ai(z) and Qi(z) will increase due to the
application of both the EPGR and inverse delay matrices.

Once all columns of the matrix have been visited, one sweep of
the algorithm has been completed. Although the dominant coeffi-
cient at each iteration is driven to zero, the algorithm only ensures
that all coefficients of the series of elements beneath the diagonal in
one column are suitably small before starting the next column-step.
Therefore, through future column-steps of the algorithm, these small
coefficients can be rotated with other suitably small coefficients, al-
lowing them to increase in magnitude. As a result, multiple sweeps
of the algorithm may be required to ensure that the magnitude of all
coefficients relating to elements beneath the diagonal of the matrix
are less than ε. Despite this, the algorithm is guaranteed to converge
and generally only a couple of sweeps are required. Note that this is
not a problem when calculating the QRD of a scalar matrix, where
all elements beneath the diagonal are driven to zero. Convergence
of the PQRD-BC algorithm can be easily deduced from the proof of
convergence for the SBR2 algorithm [1] and is outlined in [6].

3.1.3. Truncation of the Polynomial Matrices

The orders of the polynomial matrices Ai(z) and Qi(z) from equa-
tion (14) will increase with the application of every elementary delay
matrix at each iteration, of each column-step of the algorithm. Of-
ten after a series of iterations the orders can become very large with
many of the coefficients positioned at outer lags of the matrix equal
to a small proportion of the F-norm of the matrix. This is undesirable
for the potential application of the algorithm to MIMO equalisation,
where the computational complexity of the equaliser will be directly
proportional to the order of the upper triangular matrix R(z). Fur-
thermore, large orders will also slow down the iterative computa-
tional procedure of the algorithm. Therefore, throughout the algo-
rithm both polynomial matrices are truncated [4, 5]. For a polyno-
mial matrix A(z) ∈ R

p×q, with coefficient matrices A(t) ∈ R
p×q

for t = t1, . . . , t2, a suitable truncation method can be implemented
as follows: find a maximum value for T1 and a minimum value for
T2 such that

T1∑
τ=t1

p∑
l=1

q∑
m=1

(alm(τ))2

‖A(z)‖2
F

≤
μ

2
(15)

and
t2∑

τ=T2

p∑
l=1

q∑
m=1

(alm(τ))2

‖A(z)‖2
F

≤
μ

2
(16)

where μ defines the proportion of ‖A(z)‖2
F

permitted to be trun-
cated from the polynomial matrix A(z), with one implementation
of the truncation method. The coefficient matrices A(τ) for τ =
t1, . . . , T1 and τ = T2, . . . , t2 can subsequently be trimmed from

3179

the matrix. To ensure that an accurate decomposition has been per-
formed for a particular choice of μ, the relative error of the decom-
position can be calculated as

Erel =
∥∥∥A(z) − Q̃(z)R(z)

∥∥∥
F

/ ‖A(z)‖
F

. (17)

Using this truncation method does not affect the proof of conver-
gence for the algorithm [6].

4. EXAMPLE OF THE PQRD

A polynomial matrix A(z) ∈ R
4×3 was generated. Each of the

polynomial elements was chosen to be a fourth order FIR filter with
coefficients drawn from a Gaussian distribution with mean zero and
unit variance. The QRD of A(z) was obtained using the PQRD-BC
algorithm, where the truncation parameter and the stopping crite-
rion were set as μ = 10−6 and ε = 10−2 respectively. Only two
sweeps of the algorithm were required to ensure the stopping con-
dition demonstrated by (11) was satisfied, requiring a total of 233
iterations over six column-steps. The upper triangular matrix R(z)
obtained from the algorithm can be seen in Figure 1, where a stem
plot has been used to demonstrate the series of coefficients for each
of the polynomial elements. The position of the stem plot in the
figure corresponds to the position of the polynomial element, which
it represents within the matrix. To ensure that an accurate decom-
position was performed despite truncating the polynomial matrices,
the relative error was calculated according to equation (17). This
measure was found to be 0.0057 demonstrating that a good approxi-
mation has been achieved. Note that if this measure if too large, then
the value of μ can of course be decreased.

The existing PQRD-BS algorithm, as described in [4], was then
applied to A(z) using the same values of μ and ε. This algorithm
required a further 50 iterations to converge than the PQRD-BC al-
gorithm, but also obtained a larger relative error of 0.0079. Fur-
thermore, from Figure 2 the F-norm, ν, of all polynomial elements
beneath the diagonal of the matrix A(z) over the series of iterations
of the algorithm can be seen to suddenly increase in two places. By
inspection of the same figure, the measure ν obtained using the pro-
posed PQRD-BC algorithm can be seen to not exhibit this erratic be-
haviour. This is due to the inverse time shift matrix applied at each
iteration of the algorithm. If this inverse time shift is also applied at
each iteration of the PQRD-BS algorithm, then the erratic behaviour
is no longer observed, but again the convergence is slower. This
measure is also demonstrated in Figure 2.

5. CONCLUSIONS

We have presented a novel algorithm for calculating the QRD of
a polynomial matrix. The method has been compared to an exist-
ing algorithm and has shown improved performance in terms of the
number of iterations for the algorithm to converge. Moreover, by
addition of the application of an inverse time shift matrix, which
stops off-diagonal coefficients within the matrix suddenly increas-
ing, erratic behaviour in the convergence of the earlier algorithm is
removed. Future works aim at exploring the potential application
of the decomposition algorithm to broadband MIMO channel equal-
isation and a comparison of this method with a MIMO orthogonal
frequency division multiplexing QRD approach.

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

−20 0 20

0
2
4

Lag
−20 0 20

0
2
4

Fig. 1. The polynomial elements of the upper triangular polynomial
matrix R(z), obtained when the PQRD-BC algorithm was applied to
the polynomial matrix A(z).

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Iteration Number

ν

PQRD−BC algorithm

Exisiting PQRD−BS algorithm

Modified PQRD−BS algorithm to include
an inverse time shift matrix at each iteration

Fig. 2. The F-norm of all of the polynomial elements beneath the
diagonal, ν, over the series of iterations of i) the proposed PQRD-BC
algorithm, ii) the existing PQRD-BS algorithm and iii) the PQRD-
BS algorithm with an inverse delay matrix at each iteration.

6. REFERENCES

[1] J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif and J. Fos-
ter, “An EVD Algorithm for Para-Hermitian Polynomial Matri-
ces,” IEEE Transactions on Signal Processing, vol. 55, no. 6,
pp. 2158–2169, 2007.

[2] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice
Hall, 1993.

[3] G.H. Golub and C.F. Van Loan, Matrix Computations (Third
Edition), The John Hopkins University Press, 1996.

[4] J.A. Foster, J.G. McWhirter and J. Chambers, “A Polynomial
Matrix QR Decomposition with Application to MIMO Channel
Equalisation,” Proc. 41st Asilomar Conference on Signals, Sys-
tems and Computers, 2007.

[5] J.A. Foster, J.G. McWhirter and J. Chambers, “An Algorithm
for Computing the QR Decomposition of a Polynomial Matrix,”
15th International Conference on Digital Signal Processing,
Cardiff, 2007.

[6] J.A. Foster, Algorithms and Techniques for Polynomial Matrix
Decompositions, Ph.D. thesis, School of Engineering, Cardiff
University, UK, 2008.

3180

