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Abstract

This paper is concerned with the derivation and analysis of
higher order algorithms of polynomial type for computing an or-
thonormal basis of a subspace. These algorithms are derived
from unconstrained optimization of certain cost functions. The
proposed methods are efficient and do not require square root
computation. Based on these, algorithms for orthonormaliza-
tion with respect to a positive definite matrix and principal and
minor subspace methods are developed. Numerical experiments
illustrate the theoretical results.
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1 Introduction

Orthonormalization has many applications in scientific compu-
tation. It is a useful stabilizing techniques in many numerical
methods such as the subspace power method. In independent
component analysis, it is used as prewhitening technique. Gen-
erally any matrix X with linearly independent columns can be
decomposed as X = QR, where Q has orthonormal column vec-
tors and where R is an upper triangular square matrix.

Consider the matrix X = [ x1 x2 · · · xp ] IRn×p. If X
is a full rank matrix, then one can verify that the matrix

Y = X(XTX)
−1
2 is orthogonal, i.e., Y TY = I or equiva-

lently, for each two different columns yi, and yj of the matrix Y :

yT
i yj = δij , where δij is the Kronecker delta function. Clearly,
X and Y span the same subspace, however ||Y || = 1 regardless
of the norm of X. Here ||Y || denotes the Euclidean norm of

Y . Note that if X is not full rank, then Y = X{(XTX)+} 1
2

satisfies the relation (Y T Y )2 = Y T Y , i.e., Y T Y is a projection.
Here (.)+ denotes the Moore-Penrose generalized inverse of (.).
Typically, orthogonalization is accomplished by means of some
variant of the Gram-Schmidt process. In this work, a new type
of algorithms is proposed, which involves fast implementation of
square root methods without performing any square root oper-
ation.

The Gram-Schmidt process is related to the QR-factorization
[1] which is used in solving linear equations. The QR factoriza-
tion allows fast computation of the determinant, and least square
solutions. One of the main motivation of this work is to develop
dynamical systems for computing Y without the costly compu-
tation of matrix square root. Another motivation of using ortho-
normalization is that it is a stabilizing tool in many numerical
methods [2]. For example it is used in the context of Krylov-type
eigenvalue solvers such as Arnoldi and related methods [3].

In this work, new higher order orthogonalization algorithms
have been proposed. These algorithms are based on uncon-
strained optimization of certain cost functions, where a class of
methods are derived from polynomial representation of analytic
functions having zeros at 1 and -1.

The following notation will be used throughout. The sym-
bols IR, denotes the set of real numbers. The derivative of x
with respect to time is written as x′. The identity matrix of
appropriate dimension is expressed with the symbol I. Finally,
the derivative of a Lyapunov function V (x) with respect to time

is denoted by V̇ .

2 Quadratically Convergent Algorithm
Many merit functions have been proposed to derive orthonor-
malization algorithms [4]. In this section, analysis of some of
these algorithms will be given.

First, consider the following unconstrained optimization
problem:

Optimize F (x) = tr{1

2
xTx− 1

4
(xT x)2}, (1)

where x ∈ IRn×p. The gradient of F is

∇F (x) = x− xxTx.

If x ∈ IRn×1, then the Hessian of F can be shown to be

∇2F (x) = I − xTxI − 2xxT .

The set of equilibrium points of the above system consists of
all points for which x − xxTx = 0. Clearly if x is full rank,
then ∇F (x) = x − xxTx = 0 if and only if xTx = I. If x
is not full rank, then xT x and xxT are orthogonal projections,
i.e., (xT x)2 = xT x and (xxT )2 = xxT . Also, if xTx = I, then
∇2F (x) = I − xTxI − 2xxT = −2xxT which is negative semi-
definite. In general, the Hessian matrix is

∇2F (x) = I ⊗ I − xT x⊗ I − I ⊗ xxT −Kx⊗ xT , (2a)

where K is a symmetric permutation matrix. Hence at any full
rank equilibrium point x̂ where x̂T x̂ = I, it follows that

∇2F (x̂) = I ⊗ I − x̂T x̂⊗ I − I ⊗ x̂x̂T −Kx̂⊗ x̂T

= I ⊗ I − I ⊗ I − I ⊗ x̂x̂T −Kx̂⊗ x̂T

= −I ⊗ x̂x̂T −Kx̂⊗ x̂T

= −(I ⊗ x̂)(I ⊗ I +K)(I ⊗ x̂T ),

(2b)

for some symmetric permutation matrix K [4]. Since K is sym-
metric and K2 = I, then each eigenvalue of K is 1 or -1. Thus
∇2F (x) is negative semidefinite, i.e., each nonzero solution of
∇F (x) = 0 satisfies the first and second order of optimality con-
ditions.

Based on the gradient of the above cost function, we obtain
the following dynamical system:

x′ = x− xxTx. (3)

The exact solution of the system (3) when x ∈ IRn×1 is

x(t) =
etx0√

xT
0 x0e2t − xT

0 x0 + 1
, (4)
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where x0 = x(0). This shows that if x0 �= 0, then limt→∞ x(t) =
x0√
xT
0 x0

, and that if xT
0 x0 = 1, then x(t)T x(t) = 1 for all t ≥ 0.

Generally, rank(x(t)) = rank(x(0)) for all t ≥ 0.
The systems (3) can be shown to be globally stable [6,7] using

the function V (x) = 1
4
tr{(xT x − I)2}. It follows that the time

derivative of V along the trajectory of (3) is

V̇ = −1

2
tr{(xT x− I)2(xTx)} ≤ 0. (5)

It follows that the system (3) is globally stable [7]. We also note

that V̇ = 0 if and only if (xT x − I)xT = 0. Moreover, the set
Ω1 = {x ∈ IRn×p : xTx = I} is an invariant set for the system
(3). Here n, p ∈ IN and p ≤ n. This implies that if x0 ∈ Ω1,
then x(t) ∈ Ω1 for each t ≥ 0. Thus, in the limit, (xTx)2 = xT x
which means that as t → ∞, x(t)T x(t) converges to an identity
matrix provided that x0 is full rank.

Using Euler method for solving the ordinary differential equa-
tion (3) with a stepsize α = 1

2
, the discretized version of (3) leads

to the following iterative equation:

xk+1 =
xk

2
{3I − xT

k xk}, (6)

where x0 is the initial matrix. The analysis of convergence can
be established using the iteration function

f(z) =
3

2
z − 1

2
z3, (7)

where z0 = σ is a singular value of x0. Clearly, f(z) = z if and
only if z = 0, 1,−1.

The quadratic convergence of (7) is obtained from the equa-
tions:

f(z) − 1 = (z − 1)2(−1

2
z − 1),

f(z) + 1 = (z + 1)2(−1

2
z + 1).

To insure convergence, the initial condition x0 should be
scaled so that its singular values are in the interval (−√

5,
√

5) =

(−2.236067, 2.236067). This means that if z0 ∈ (−√
5,
√

5), then

zk+1 =
3

2
zk − 1

2
z3k, (8)

converges to 1 or -1 depending on whether z0 > 0 or z0 < 0, re-
spectively. A proper scaling factor is ||A||1 = maxi{

∑n

j=1
|aij |},

or ||A||∞ = maxj{
∑m

j=1
|aij |} [8]. From the inequalities

σ1 = ||A||2 ≤ ||A||1, σ1 = ||A||2 ≤ ||A||∞, or σ1 = ||A||2 ≤√
||A||1||A||∞, one may use x0 = A

||A||1 , x0 = A
||A||∞ , or

x0 = A√
||A||1||A||∞

as an initial matrix for the system (6). The

singular values of each of these matrices are in the interval [0 1].

3 Higher-Order Polynomial Type
Fixed Point Functions

Motivated by the quadratically convergent algorithm (6), higher
order convergent fixed point functions by optimizing some merit
functions. By considering unconstrained optimization problems
of the form

Optimize F (x) = tr{1

2
xTx− 1

2r + 2
(xT x)r+1}, (9)

where the integer r ≥ 2 and x ∈ IRn×p. The dynamical system
based on the gradient of F is

x′ = x− x(xTx)r , x(0) = x0. (10)

The analysis of convergence can be established using a fixed point
function z = g1(z) where g1 is obtained from a discretized ver-
sion of (10):

g1(z) = (1 + α)z − αz2r+1, z ∈ IR

Figure 1: This figure shows that g1(z) increasing in the interval
(−1, 1) and decreasing on the intervals (−√

5,−1) and (1,
√

5).

with initial value z0 = σ where σ is a singular value of x0.
We are interested in the nonzero real fixed points of g3 which

are −1, 1. The values of α for which g′1(±1) = 0 are obtained by
solving the equation

1 + α− (2r + 1)α = 0. (11)

Therefore,

α =
1

2r
.

Hence the fixed point function

g1(z) =
1 + 2r

2r
z − 1

2r
z2r+1, (12)

is quadratically convergent near z = ±1. Note that −z ≤
g1(z) ≤ z if z ∈ (−(4r+1)

1
2r , (4r+1)

1
2r ). Thus the set of initial

values for which (12) converges becomes smaller as r→ ∞.
Methods of higher order convergence may be obtained by

combining different methods of using different values of the pos-
itive integer r. For example it is possible to design a method of
order 3 of the form

g2(z) =
1 + α

2
z − α

2
z3 +

1 + β

2
z − β

2
z5,

for some α and β. The parameters α and β are determined by
solving the equations

g′2(±1) = 0 =
2 + α+ β

2
− 3α

2
z2 − 5β

2
z4|z=±1,

g′′2 (±1) = 0 = −6α

2
z − 20β

2
z3|z=±1.

These imply that
α+ 2β = 1

3α+ 10β = 0
,

and hence α = 5
2

and β = −3
4

. This leads to the following
iterative equation:

g2(z) =
z

8
{15 − 10z2 + 3z4}. (13)
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Figure 2: This figure provides the radius of intervals, given
in the vertical axis, as a function of α, given in the horizontal
axis, for which the iteration zk+1 = (1 + α)zk − αz3k converges.

For example, α = 1 corresponds to
√

2 which implies that (8)
converges from any initial value in the interval (−√

2,
√

2). This
figure also shows that the smaller α the larger the interval of
convergence.

In matrix form, the iteration (13) may be expressed as

xk+1 =
xk

8
{15I − 10xT

k xk + 3(xT
k xk)2}. (14)

The initial condition x0 should be chosen so that its singular
values are in the interval (−1.5275, 1.5275). Thus (14) converges
provided that the singular values of x0 ∈ (−1.5275, 1.5275).
These bounds may be derived from the inequality −z ≤
g2(z) = z

8
{15 − 10z2 + 3z4} ≤ z. Figure 3 shows that if

z ∈ (−1.5275, 1.5275), then f(z) ∈ (−1.5275, 1.5275).
Another example of deriving a method of order 4 involves

determining α, β, γ such that

g3(z) =
1 + α

3
z − α

3
z3 +

1 + β

3
z − β

3
z5 +

1 + γ

3
z − γ

3
z7.

The points z = ±1 are fixed points of F for any parameters
α, β and γ. To derive a fourth order fixed point function, the
following equations must be satisfied:

g′3(±1) = 0 =
3 + α+ β + γ

3
− 3α

3
z2 − 5β

3
z4 − 7γ

3
z6|z=±1

g′′3 (±1) = 0 = −6α

3
z − 20β

3
z3 − 42γ

3
z5|z=±1

g′′′3 (±1) = 0 = −6α

3
− 60β

3
z2 − 210γ

3
z4|z=±1.

This leads to the following set of equations

2α+ 4β + 6γ = 3,

6α− 20β − 42γ = 0,

6α+ 60β + 210γ = 0.

(15)

Figure 3: This figure shows that f(z) = z
8
{15 − 10z2 + 3z4

increasing in the interval (−1, 1) and decreasing on the intervals
(−1.5275,−1) and (1, 1.5275).

The solution of these equations is
(α, β, γ) = (6.5625,−3.9375, 0.9375). Thus

g3(z) =
z

16
(35 − 35z2 + 21z4 − 5z6). (16)

This fixed point iteration converges provided that z0 ∈
(−1.73205080756888, 1.73205080756888)

The fixed point iteration (16) may be expressed in matrix
form as

G3(x) =
x

16
(35 − 35xTx+ 21(xT x)2 − 5(xT x)3). (17)

This converges provided that the largest singular value of the
initial matrix x0 is in the interval (0,1.73205080756888).

4 Orthonormalization with Respect to
a Matrix

Let B be a positive definite matrix, and let x0 be a full rank ma-
trix. The above analysis may be extended to develop dynamical
systems that converge to a matrix x̄ such that x̄TBx̄ = I. This
may be accomplished by replacing the quantity xTx with xTBx
in each of the orthogonalization algorithms. Thus we obtain the
following:

xk+1 =
3

2
xk − 1

2
xk(xT

k Bxk). (18)

The initial condition x0 should be chosen so that the singular

values of B
1
2 x0 are in the interval (0,

√
5).

Similarly, the iteration functions (14) and (17) may be mod-
ified as

xk+1 =
xk

8
{15I − 10xT

k Bxk + 3(xT
k Bxk)2}. (19)

xk+1 =
xk

16
(35 − 35xT

k Bxk + 21(xT
k Bxk)2 − 5(xT

k Bxk)3). (20)
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Figure 4: The graph of g3(z) = z
16

(35 − 35z2 + 21z4 − 5z6) in
the interval (-1.73205080756888,1.73205080756888)

Convergence of (19) and (20) is insured if the initial condi-

tion x0 is chosen so that the singular values of B
1
2 x0 are in the

intervals (0, 1.5275), and (0, 1.73205080756888), respectively.

5 Application to MSA and PSA
Principal and/or minor subspace analysis (PSA/MSA) of
a positive definite matrix are fundamental tasks for many
signal processing applications. From the observation that
Ax(xTAx)−1 ≈ x−T provided that x is a good approximation
of an eigenvector of A, it is possible to modify the iterations (6),
(14), and (17) so that

xk+1 =
3

2
Axk(xT

k Axk)−1xT
k xk − 1

2
xkx

T
k xk, (21a)

xk+1 =
3

2
xk − 1

2
Axk(xT

k Axk)−1(xT
k xk)2, (21b)

xk+1 =
Axk(xT

k
Axk)−1xT

k
xk

8
{15I−10xT

k xk+3(xT
k xk)2}. (22)

xk+1 =
Axk(xT

k
Axk)−1xT

k
xk

16

× {35 − 35xT
k xk + 21(xT

k xk)2 − 5(xT
k xk)3}.

(23)

It can be verified that the iterations (21a), (22), (23) converge
to principal subspaces of A while the iteration (21b) converges
to minor subspaces of A.

6 Simulation Results

In order to confirm the validity and performance of the proposed
algorithms, a simulation example is given below. The iteration
(6) is applied to the 6 × 3 matrix x0 which is given by:

x0 =0.9602 1.0210 1.1673
1.2967 0.5765 1.6790
1.0132 0.3442 0.7447
1.2916 1.0366 1.4550
0.9513 1.4546 1.5331
0.6148 0.9578 1.1575

Using the Matlab function rand, the matrix x0 is generated
by adding two random matrices of size 6 × 3. The nonzero sin-
gular values of x0 are 4.6812, 0.8306, 0.3496. Since some of the
singular values are greater than

√
5, the matrix x0 needs to be

scaled so that the singular values of the scaled matrix are smaller
than

√
5. Thus the matrix x0 is divided by ||x0||1 and the result-

ing matrix is used as initial matrix for the iteration (6). After
20 iterations, Algorithm (6) converges to the matrix

x=0.2979 0.4226 0.0341
0.2094 -0.4667 0.8247
0.7598 -0.0560 -0.1711
0.4891 0.2545 0.1225

-0.0621 0.6588 0.2891
-0.2168 0.3189 0.4369

The accuracy of x is measured by the error ||xTx − I||2 =
2.4195(10)−16 .

7 Conclusion
Polynomial type higher order methods for orthonormalization
are developed from converting continuous differential equations
into discrete ones by choosing optimal stepsizes. These methods
are shown to be equivalent to methods for computing the polar
decomposition of matrices. Convergence analysis and the sets
of initial conditions for which these methods converge are given.
The proposed iterations may be generalized in many directions.
For example, the proposed methods can be used to extend and
analyze the behavior of these algorithms for the complex case.
Additionally, more simulations need to be conducted to examine
the convergence behavior of the iterations stated in Sections 4
and 5.
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