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ABSTRACT

This paper deals with the problem of blind source separa-

tion of convolutive MIMO mixtures by a deflation proce-

dure. Contrast functions showing a quadratic dependence

with respect to the searched parameters have recently been

proposed. Combined with a fast SVD-based optimization

technique, they proved to be very efficient for the extraction

of one source signal. In this contribution, we examine how

these contrast functions behave in a deflation scenario. We

show that the SVD-based optimization method requires a

good knowledge of the filter orders due to its sensitivity on

a rank estimation. To overcome the difficulty, we propose an

optimal step size gradient algorithm.

Index Terms— Blind Source Separation, Contrast Func-

tion, Deflation Procedure, Higher-Order Statistics, Reference

System

1. INTRODUCTION

The problem of blind source separation in a multi-input/multi-

output (MIMO) convolutive context has found interesting so-

lutions through the optimization of so-called contrast func-

tions. One can distinguish two main approaches. On the one

hand, all source signals can be separated simultaneously. On

the other hand, the sources can be extracted one by one by

optimizing for each a multi-input/single-output (MISO) sep-

arating criterion such as the constant modulus criterion [3] or

the kurtosis contrast . Between two optimizations, a deflation

procedure [2] is applied and this is the kind of approaches we

consider in this paper.

Recently, contrast functions have been proposed [1]

which are particularly appealing because they are quadratic

with respect to the searched parameters. This property results

from the use of reference signals in higher order statistics.

Taking advantage of this quadratic feature, an algorithm

based on a singular value decomposition (SVD) has been

proposed [1, 4] and was shown to be very efficient for the

extraction of one source signal. However its behavior within

a deflation procedure for the extraction of all source sig-

nals remains unclear up to now and, to our knowledge, no

other method has been proposed for such quadratic contrast

functions.

We show that the SVD based optimization is very sensi-

tive to a rank estimation and thus it is not appropriate to use it

within a deflation procedure. We propose a new optimization

algorithm, which is based on an optimal step size gradient

and which does not require any rank estimation. The two op-

timization methods are finally compared using computer sim-

ulations and are compared to a classical kurtosis optimization

algorithm.

2. MODEL AND ASSUMPTIONS

We consider an observed Q-dimensional discrete time signal

x(n) (where n ∈ Z holds implicitely in the whole paper)

which is given by the following convolutive mixing model:

x(n) =
∑
k∈Z

M(k)s(n− k)

M(n) respresents the Q×N matrix impulse response of the

linear time invariant (LTI) mixing system and s(n) is a N -

dimensional signal which components are referred to as the

sources. The objective of source separation is to find an in-

verse separating LTI system, which impulse response will be

denoted W(n). In case of successful separation, the output

of the separator corresponds to the source vector and is given

by:

y(n) =
∑
k∈Z

W(k)x(n− k)

When the separation is performed using the observed signals

x(n) only, the problem is referred to as the blind source
separation (BSS) problem. We introduce the combined

mixing-separating system, which impulse response is given

by G(n) =
∑

k∈Z
W(k)M(n− k).

To be able to solve the BSS problem, we introduce the

following classical assumptions:
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A1. The source signals si(n), i ∈ {1, . . . , N} are station-

ary, zero-mean random processes with unit variance. In

addition, they are also statistically mutually independent.

A2. The mixing system is a finite impulse response (FIR)

filter with impulse response of length L. In addition, there

are more sensors than sources (Q ≥ N ) and the polyno-

mial matrix z-transform M[z] of the filter {M} is irre-

ducible.

3. DEFLATION AND CONTRAST

It is known that under assumptions A1 and A2, BSS can only

be solved up to a permutation and a filtering ambiguity: af-

ter separation, the components of y(n) hence correspond in

any order to the components of s(n), each passed through a

scalar filter. More precisely, we consider a deflation approach

to BSS: the sources are extracted one by one, that is y(n)
is constructed component by component. In this case, y(n)
denotes the component currently processed and w(n) (resp.

g(n)) is the corresponding row of W(n) (resp.G(n)). In case

of successful separation, the processed output reads

y(n) =
(
0, . . . , 0, {gi0}, 0, . . . , 0

)
︸ ︷︷ ︸

1×Nfilter {g}, only i0th component non zero

s(n) (1)

where i0 ∈ {1, . . . , N} and {gi0} is a scalar filter. If the

sources are temporally independent and identically dis-

tributed (i.i.d.), the scalar filter {gi0} further reduces to a

delay and scaling factor, that is (with δ standing for the Kro-

necker symbol):

gi0(n) = αδ(n− ni0) where: α ∈ C
∗, ni0 ∈ Z. (2)

An attractive approach in BSS consists in transforming

the original problem in an optimization one. This idea has led

to the notion of contrast function: by definition, it is a crite-

rion which maximization with respect to the separator leads to

an acceptable solution of the BSS problem, that is each row of

the combined mixing-separating system {G} satisfies either

(1) in the general case or both (1) and (2) in the case of i.i.d.

sources. Let us define the two following cumulants:

C(4){y} � Cum {y(n), y∗(n), y(n), y∗(n)}
C(4)

z {y} � Cum {y(n), y∗(n), z(n), z∗(n)}
It has been proved in [5, 6] that under the constraint

E{|y(n)|2} = 1, the criterion |C(4){y}| is a contrast function.

In [1], it was shown that, under mild conditions on a so-called

“reference signal” z(n), the following criterion is a contrast

function:

|C(4)
z {y}| under the constraint: E{|y(n)|2} = 1 (3)

This paper is concerned with the problem of optimization

of the contrast |C(4)
z {y}|. It has already been noticed that

|C(4)
z {y}| yields a quadratic problem with respect to the pa-

rameters and a method based on SVD has been proposed [1].

A similar method has been proposed in [4], where the method

is referred to as EVA (Eigenvector Algorithm). Unfortunately,

both methods require a projection onto a signal subspace.

Since its dimension is unknown, this step is highly sensitive

to a rank estimation. It follows that both methods in [1, 4] are

efficient only in perfect non noisy condition or with a priori
knowledge of the signal subspace dimension. We propose in

the next section a method that overcomes this problem and

which, despite its simplicity, has not been investigated yet.

4. NEW OPTIMIZATION METHOD

Assumption A2 ensures that the mixing filter admits a

MIMO-FIR left inverse filter, which can be assumed to be

causal because of the delay indetermination and whose length

is denoted by D. The row vectors defining the impulse re-

sponse of the MISO equalizer can always be stacked in the

following 1×QD row vector:

w �
(
w(0) w(1) . . . w(D − 1))

)
We similarly define the QD × 1 column vector

x(n) �
(
x(n)T x(n− 1)T . . . x(n−D + 1)T

)T
.

Using these notations it is straightforward to see that the pro-

cessed output can be written as

y(n) = wx(n).

To maximize (3), we propose to use a modified gradi-

ent method, where the parameter vector is projected and

normalized after each gradient step to keep the constraint

E{|y(n)|2} = 1 true. Similarly to methods based on a kur-

tosis contrast function, this requires to consider a normalized

criterion J defined by:

J(w) =

∣∣∣∣∣ C(4)
z {y}

E{|y(n)|2}

∣∣∣∣∣
2

(4)

Now denote by R � E{x(n)x(n)H} the covariance matrix

of x(n) and define the matrix C component-wise by

(C)i,j = Cum{xi(n), x∗
j (n), z(n), z∗(n)}.

Then, the power at the output of the MISO equalizer reads

E{|y(n)|2} = wRwH and by multi-linearity of the cumu-

lants we have C(4)
z {y} = wCwH . Finally:

J(w) = |J̃(w)|2 where J̃(w) =
wCwH

wRwH
(5)

The complex gradient is then given by the equations:

∂J

∂w∗ =
(

∂J

∂w

)∗
=

(
2J̃(w)

∂J̃

∂w

)∗
with:

∂J̃

∂w
=

w∗C
wRwH

− (w∗CwH)
w∗R

(wRwH)2
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The proposed algorithm consists of the following two steps

which are repeated until convergence:

1. Set d = ∂J
∂w∗

2. • Choose a step size μ and update the parameter

vector: w ← w + μd

• Renormalize: w ← w√
wRwH

In the most basic version of the algorithm, one chooses a suf-

ficiently small constant for the step size μ. Although it may

lead to acceptable results, it is suboptimal. In our situation,

it is possible to determine analytically the optimal step size

μopt at each iteration.

Indeed, the optimal step size μopt maximizes J(w+μd).
Hence it is a root of the equation

∂J(w+μd)
∂μ = 0. According

to (4), it satisfies further:

∂J̃(w + μd)
∂μ

= 0

From the definition of J̃ in (5), the above equation can be

simplified and μopt is a root of the degree two polynomial

equation a2μ
2 + a1μ + a0 = 0 with

a2 = dCdH�[wRdH ]−�[wCdH ]dRdH

a1 = dCdHwRwH −wCwHdRdH

a0 = �[wCdH ]wRwH −wCwH�[wRdH ]

In the gradient algorithm, the choice of the step size is finally

given by the following two operations:

• Find the roots μ1, μ2 of the polynomial a2μ
2+a1μ+a0.

• Set μopt = arg maxμ1,μ2 J(w + μd)

5. DISCUSSION

It has already been noticed in [1] that C(4)
z {y} depends

quadratically on w whereas C(4){y} is a polynomial of

degree four. This has led to a computationally efficient

optimization method based on an eigenvector property [1, 4].

Although our method does not exploit the latter property, the

gradient of (4) should be easier to compute than in the case of

the kurtosis based contrast. It is thus computationally much

less involved to use our method than to optimize a kurtosis

contrast.

As mentioned, the methods in [1, 4] can only be used in

perfect conditions. In a deflation context, the vector of obser-

vations is modified each time a new source has been recov-

ered: its contribution is subtracted by a least square approach.

As one should expect, the signal to noise ratio deteriorates

during this process. It follows that the methods in [1, 4] are

not well suited to extract the sources after the first deflation

step. This difficulty is avoided in [1] by assuming additional

knowledge of the length of the impulse responses of the mix-

ing/separating filters. On the contrary, our method does not

show this drawback.

Finally, a further improvement already proposed in [1] can

be applied to our method. It is based on the idea that a ref-

erence signal z(n) close to a particular source yields a better

estimate of this source. Therefore, one can use the source es-

timated by the maximization of (3) as a new reference signal,

and repeat this procedure. In the following, we denote by Ni

the number of times this procedure is repeated.

6. SIMULATIONS

We now compare the different deflation based separation

methods both in term of computational load and in term of

robustness in a deflation context. All results come from a

set of 1000 Monte-Carlo realizations. The sources have been

drawn according to a binary distribution, taking their values

in {±1} with equal probability 1/2.

Figure 1 illustrates how the different optimization meth-

ods (SVD- and gradient- based) of |C(4)
z {y}| behave whenever

R is not full rank (this is the case as we have chosen N = 3,

Q = 5 and L = 2). The MSE on the extracted source is

plotted and for readability, the 1000 realizations have been

ordered by increasing value of the MSE. One can observe

that the SVD-based method fails in about 60% realizations

when the rank of R is unknown. On the contrary, a gradient

based optimization or an SVD-based method where the rank

is known yields acceptable results. Figure 2 illustrates the

same phenomenon in a deflation context: the problem does

not occur for the 1st source, which is coherent with our choice

Q = N +1 = 4 for which R is full rank for the first deflation

step. On the contrary, the extraction of the second and third

sources fails quite often.
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10−4

10−2

100

Realizations (sorted)

M
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Gradient
SVD, unknown rank
SVD, known rank

Fig. 1. Sensitivity of the different methods to the rank of R
(100000 samples, N=3, Q=5 and L=2).
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(a) 1st extracted source
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(b) 2nd extracted source
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(c) 3rd extracted source

Fig. 2. Sensitivity of the different methods to the rank of R in a deflation context (100000 samples, N=3, Q=4 and L=2).

Tables 1, 2 and 3 compare the quality result obtained for

different number of samples by one gradient optimization of

the two contrast functions |C(4){y}| and |C(4)
z {y}| respec-

tively. We have also tried the improvement proposed in Sec-

tion 5 by performing Ni = 5 maximizations of (3) and up-

dating each time the reference signal. One can see that our

method provides quite good results with Ni = 1 gradient

optimization of |C(4)
z {y}|. With Ni = 5 maximizations of

|C(4)
z {y}|, the MSE is as good as the result given by the kur-

tosis contrast function |C(4){y}|. Finally, the execution time

is showed in Table 4: as expected, quadratic contrasts are sig-

nificantly faster to maximize than kurtosis based contrast: in

particular, this allows one to handle very large sample sizes.

separation

method

Deflation step

1st 2nd 3rd

|C(4)
z {y}| Ni = 1 0.0519 0.0658 0.0942

|C(4)
z {y}| Ni = 5 0.0030 0.0111 0.0456

Kurtosis 0.0035 0.0087 0.0677

Table 1. Average (1000 realizations) MSE for different con-

trast function and optimization methods; 1000 samples.

separation

method

Deflation step

1st 2nd 3rd

|C(4)
z {y}| Ni = 1 0.0171 0.0152 0.0339

|C(4)
z {y}| Ni = 5 0.0069 0.0032 0.0174

Kurtosis 0.0028 0.0032 0.0187

Table 2. Average (1000 realizations) MSE for different con-

trast function and optimization methods; 10000 samples.
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