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ABSTRACT
The paper deals with the problem of the blind extraction of a
source signal after a MIMO convolutive mixture. The extrac-
tion is performed using aMISO equalizer. A contrast function
based on high order statistics is first proposed. It is more gen-
eral than the existing contrast in the same context and exhibits
a cubic dependence w.r.t. the unknown equalizer parameters.
This allows us to propose a new extraction algorithm based
on a third order tensor decomposition. Computer simulations
illustrate the good behavior and the usefulness of our algo-
rithm.

Index Terms— Contrast Functions, Blind Source Extrac-
tion, Higher Order Statistics, Tensor Decomposition

1. INTRODUCTION

We consider the blind source equalization in aMIMO context.
In this case non observable source signals are mixed through
an unknown multidimensional convolutive channel. The goal
of extraction consists of recovering one source signal. This is
referred to as MISO equalization.
A rather classical way to solve the equalization problem

consists of optimizing criteria based on high order statistics,
see e.g. [1, 2, 3, 4]. One (potential) drawback in consider-
ing high order statistics is the high order dependence on the
parameters involved in the criteria. Generally, this leads to
“time consuming” optimization schemes. Recently solutions
were proposed that still consider high order statistics but ex-
hibit a quadratic dependence [5, 6]. It is realized through the
use of so-called reference signals. However it was made pos-
sible by imposing constraints on the criterion that becomes
less general.
In this paper, first we propose a new criterion based

on high order statistics but showing a cubic dependence on
parameters. The advantage of the proposed “cubic” crite-
rion is twofold. It does not require additional contraints as
“quadratic” criterion developped in [5] and shows a low or-
der (lower than the considered cumulant order) parameters

dependence. Then, we establish a link between the proposed
criterion and the problem of the best rank one approximation
of third order tensors. Finally, this allows us to suggest a
useful algorithm based on tensor decompositions.

2. MODEL AND PROBLEM FORMULATION

We consider the following noise free convolutive mixing
model

x(n) =
∑
k∈Z

M(k)s(n− k) � {M(z)}s(n). (1)

where x(n) is the (N, 1) observation vector (N ∈ N, N � 2),
s(n) is the (K, 1) source vector (K ∈ N

∗), and M(n) is
the (N, K) matrix corresponding to the impulse response of
the convolutive mixing system, whose transfer function is de-
noted by M(z) =

∑
n∈Z

M(n)z−n. Moreover n stands for
any generic integer (n ∈ Z) representing the discrete time in-
dex. For simplicity, the notation {M(z)} stands for the mul-
tivariate filtering operator.
Since the vector of source signals is assumed unknown

and unobservable, the goal of blind extraction is to estimate
one source from the only use of the observations. To achieve
this aim, the following assumptions are required about the
mixing system:

A0. The LTI mixing system is stable i.e. for all (i, j), the
(i, j)-th elementMij(n) of the matrixM(n) forms an
absolutely summable sequence:

∑
n∈Z

|Mij(n)| <∞
∀(i, j).

A0’. The LTI mixing system is left invertible, that is there
exists a stable LTI system {W(z)} such that the global
LTI system with impulse response
G(n) �

∑
k∈Z

W(k)M(n − k) corresponds to an
identity LTI multichannel system.

A0”. The polynomial matrix z-transform M(z) is irre-
ducible.
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One should notice that A0’ and A0” can be satisfied only if
there are strictly more observed signals than sources (N >K).
In the paper, we only consider the real case for clarity.
We consider the problem of the extraction of a single

source signal. Notice that in this context, the extraction of all
sources can be realized through the use of a deflation proce-
dure [7, 1]. In this MISO context, the aim is to estimate one
row of the separating matrixW(z), that is a (1, N) vector fil-
ter {w(z)}, called an equalizer, with impulse responsew(n),
such that the scalar signal

y(n) =
∑
k∈Z

w(k)x(n− k) (2)

restores one of the components si(n), i ∈ {1, . . . , K}, of the
source vector. In this context it is classical to define the cor-
responding (1, K) global vector filter {g(z)} by its impulse
response g(n) �

∑
k∈Z

w(k)M(n− k). Hence we have

y(n) =
∑
k∈Z

g(n− k)s(k) � {g(z)}s(n) . (3)

To be able to carry out the estimation, assumptions about the
source signals are also required. In this paper, we assume
that

A1. The source signals si(n), i ∈ {1, . . . , K} are zero-
mean, unit-norm, i.i.d. random signals. Moreover they
are statistically mutually independent (at least up to the
order of the considered cumulants).

As the source signals are unobservable, there exist some in-
herent undetermined factors in their estimation. The extrac-
tion is done when the global filter reads

∃i0 ∈ {1, . . . , K}, ∃l ∈ Z gi(n) � (g(n))i = αδn−lδi−i0

(4)
where α ∈ R, α �= 0.
The above relation is called the “equalization condition” and
expresses the fact that y(n) is equal to one source signal,
si0(n− l) up to a delay.
Since the sources are unit power, one can restrict the mul-

tiplicative factor in (4) to |α|= 1 by imposing the constraint
E{|y(n)|2}= 1. For i.i.d. sources, this constraint is equiva-
lent to:

K∑
i=1

∑
k∈Z

|gi(k)|2 = 1. (5)

It is useful to introduce the following notations. The
source signals set satisfying assumptions A1. will be denoted
by S. The set of unit norm vector filters will be denoted by
G1 and the subset of filters in G1 satisfying the equalization
condition (4) by Gi0

1e. Finally, we denote by Y the set of the
ouput MISO equalizer y(n) when the input source signals
belongs to S and the global system belongs to G1.

3. NEW CONTRAST FUNCTION

We consider the definition of contrasts within the classical
context of i.i.d. source signals given in [5].
One of the main goals of the paper is to propose an in-

teresting contrast function which is cubic w.r.t. the searched
parameters. For that, we consider the following fourth-order
cross-cumulant

κ3,4,z{y(n)} � Cum{y(n), y(n), y(n), z(n)} (6)

where z(n) is a given reference signal which is assumed to be
obtained by a stable filtering of the sources [5], i.e. it depends
on source signals linearly. For example, under the assumption
A0’, the reference signal can be chosen as the first observation
signal. We now define the following function:

C3,4,z{y(n)} � |κ3,4,z{y(n)}| . (7)

We also define the following supremum,

κmax

3,4 =
N

max
j=1

sup
k∈Z

|κ3,4,z{sj(n− k)}|. (8)

which is assumed to satisfy

A2. ∃(j0, k0) such that:

κmax

3,4 = |κ3,4,z{sj0(n− k0)}| < ∞. (9)

We can now propose the following proposition:

Proposition 3.1. In the case of i.i.d. source signals, under
assumption A2., the function C3,4,z is a contrast over the set
G1.

Proof. (Sketch of) Using the multilinearity property of cumu-
lants and the i.i.d. assumption of source signals, we have

κ3,4,z{y(n)} =
∑
j,k

g3

j (k)κ3,4,z{sj(n− k)} . (10)

Hence

C3,4,z{y(n)} =

∣∣∣∣∣∣
∑
j,k

g3

j (k)κ3,4,z{sj(n− k)}

∣∣∣∣∣∣ , (11)

and thus

C3,4,z{y(n)} �
∑
j,k

|gj(k)|
3
|κ3,4,z{sj(n− k)}| . (12)

As y(n) is unit power, we have
∑
j,k

|gj(k)|
2

= 1. Hence

|gj(k)|
2

� 1 and thus |gj(k)|
3

� |gj(k)|
2 for all j and k.

Using this result, we have

C3,4,z{y(n)} �
∑
j,k

|gj(k)|
2
|κ3,4,z{sj(n− k)}| . (13)
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Now in considering κmax

3,4 defined in (8), we have

C3,4,z{y(n)} � κmax

3,4

∑
j,k

|gj(k)|2 = κmax

3,4 . (14)

Finally considering the equality, we have |gj(k)|
3

= |gj(k)|
2

only if it exists a given couple (j0, k0) such that{
gj0(k0) = 1
gj(k) = 0 ∀(j, k) �= (j0, k0) .

(15)

That corresponds to the equalization condition.

4. NEW ALGORITHM

We present an algorithm for the optimization of the proposed
contrast function. We assume that the mixing filter admits
a MIMO-FIR left inverse filter of length D, which is causal
because of the delay ambiguity. The row vectors which define
the impulse response can be stacked in the following (1, QD)
row vector:

w � (w(0) . . .w(D − 1)). (16)

We also define the (QD, 1) column vector

x(n) � (x(n)T x(n− 1)T . . .x(n−D − 1)T )T . (17)

It is then easily seen that

y(n) = wx(n). (18)

In considering the covariance matrix R = E{x(n)x(n)T },
we have E{|y(n)|2}=wRwT .

Now using the multilinearity property of cumulants and
(18), we have

κ3,4,z{y(n)} =
∑
i,j,k

wiwjwkCum{xi(n), xj(n), xk(n), z(n)}.

(19)
Thus this relation can be written as a third order tensor de-
composition ([8])

κ3,4,z{y(n)} = C ×1 w ×2 w ×3 w (20)

where the tensor C is defined component wise as

(C)i,j,k = Cum{xi(n), xj(n), xk(n), z(n)} . (21)

Hence the optimization of the contrast function in (7) un-
der the unit power constraint reads

max |C×1w×2w×3w| with wRwT = 1 . (22)

It is important to notice that for any row vector such that
wT

0
∈ kerR we have w

0
RwT

0
= E{w

0
x(n)x(n)TwT

0
} =

0 and hence the signal w
0
x(n) vanished identically. It fol-

lows that we may impose in addition wT ∈ (kerR)⊥ to the

optimization problem given by (22). By projection onto the
signal subspace, we obtain C̃ and w̃ and finally reduces the
problem to the following one:

max|C̃ ×1 w̃ ×2 w̃ ×3 w̃| with w̃w̃T = 1. (23)

A way to realize the abovemaximization consists in searching
for the best rank-1 approximation of tensor C̃. This can be
done in using the algorithm proposed in [8] that can be seen
as a third order extension of the power method for best rank-1
approximation of matrix.

5. SIMULATION RESULTS

We now propose computer simulations to illustrate the useful-
ness of the algorithm. We consider real-valued binary source
signals (they take their values in {-1,1 } with equal probabil-
ities) and real-valued mixing systems. We compare the cubic
and the quadratic higher-order criteria [5]. All the results pre-
sented below ensue from Monte-Carlo simulations involving
100 realizations. At each run, the mixing system and the Ne

sources samples have been drawn randomly (according to a
normal distribution). The quality of extraction is measured
thanks to a performance index derived from [9] and defined
by:

ind(g) �
∑

i∈{1,...,N}

( ∑
k∈Z

|gi(k)|2

max
i∈{1,...,N}

∑
k∈Z

|gi(k)|2

)
− 1. (24)

We consider here a mixture ofK = 3 source signals. The
length of the mixing filter is L = 3 and the number of ob-
servations is N = 6. In Figure 1, we give the average per-
formance index versus the number of sources samplesNe for
quadratic and cubic criteria. The validity of the method is
confirmed and the cubic criteria have better results than the
quadratic one for the number of samples tested. In presence
of additive white gaussian noise (figure 2), the performances
are quite similar for both methods, but cubic criterion per-
forms better above 6 dB.
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Fig. 1. Performance versus number of samples without noise.

We consider the case of K = 2 source signals, N = 5
obervation signals and a mixing filter of length L = 3. To
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Fig. 2. Performance versus SNR forNe = 3000.

evaluate the influence of the reference signal, we choose it as
z(n) = βs1(n) + (1 − β)s2(n) with β ∈ [0, 1].
In Figure 3, for Ne = 3000, the index performance is plot-
ted versus β for cubic and quadratic criteria. Better results
are obtained for values of β near 0 or 1, when the reference
signal is closer to one of the sources. The performance of the
quadratic criteria is still very sensible to this point while the
cubic’s performance remains similar.
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Fig. 3. Performance versus coefficient β for two sources.

To evaluate the influence of the reference signal with
K = 3 source signals, N = 6 observations and a mixing fil-
ter length L = 3, we choose it as z(n) = β1β2s1(n)+β1(1−
β2)s2(n) + (1 − β1)s3(n) with β1 ∈ [0, 1] and β2 ∈ [0, 1].
We choose for the sake of simplicity to consider the “worst”
case β2 = 1

β1

− 1. In Figure 4, forNe = 3000, the index per-
formance is plotted versus β1 for cubic and quadratic criteria.
As expected the change of reference signal have almost no
influence on performances of the cubic criteria whereas the
opposite holds for the quadratic one.

6. CONCLUSION

We have proposed a new contrast function and a new algo-
rithm for the blind extraction problem. They realize a good
compromise between generality and implementation simplic-
ity. Computer simulations illustrate interesting features and
performances in comparison with a quadratic algorithm.
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Fig. 4. Performance versus coefficient β1 for three sources.
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