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ABSTRACT

Usual methods for the development of adaptive filters are based on
a stochastic approximation of the gradient vector and Hessian ma-
trix, or on a deterministic minimization of quadratic a posteriori out-
put errors. Gradient-based algorithms are usually placed in the first
group, whereas least squares (LS) based algorithms are placed in the
second group. These are just how algorithms are usually presented
and analyzed and alternative descriptions exit. This paper proposes
to shed new light onto known adaptation algorithms by means of
a minimum-disturbance approach to the cost function together with
constraints added to improve their robustness. The resulting algo-
rithms are able to perform extremely well in many demanding appli-
cations.

Index Terms— Optimization methods, adaptive filters, adaptive
signal processing, minimum-disturbance description

1. INTRODUCTION

Many adaptation algorithms have been proposed in the past forty
years, offering trade-offs in convergence speed, robustness, and
computational complexity [1]–[3]. Lack of robustness may be due
to accumulation of quantization errors or due to loss of positive def-
initeness of the Hessian matrix caused by nonpersistently exciting
input signals [4], [5].

The recursive least squares (RLS) algorithm presents good con-
vergence speed, but its robustness is not guaranteed unless we opt
for a QR-decomposition implementation, or for some regulariza-
tion scheme. Robust RLS algorithm implementations with reduced
computational complexity are usually based on QR decompositions,
which are complex to implement and maintain [1]. There are other
algorithms that have been developed based on known convex op-
timization methods, like the quasi-Newton (QN) [4] and interior
point least squares (IPLS) algorithms [6]. These algorithms offer
increased robustness at a cost of extra computational complexity, for
they do not admit O(N) implementations.

In this paper we present a different approach to the derivation of
conventional adaptation algorithms by describing their deterministic
cost function as a quadratic norm of the coefficient update minimum-
disturbance, subjected or not to equality constraints. As a conse-
quence of this approach we were able to develop new algorithms
that are fast and more robust alternatives to conventional algorithms
in many application scenarios.

This paper is organized as follows. In Section 2 we present the
QN algorithm using its deterministic representation and using the
minimum-disturbance description method. The method is also used
in the following sections to derive other known algorithms as well as
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to propose new algorithms based on the LS cost function. A conver-
gence performance comparision is presented in Section 7 and con-
cluding remarks are given in Section 8.

2. QN ALGORITHM AND THEMINIMUM-DISTURBANCE
APPROACH

The QN algorithm proposed in [4] is a robust algorithm that was
developed using a stochastic approach and is based on the rank-one
quasi-Newton update of the Hessian matrix, i.e., satisfying the QN
hereditary condition [7]. However, this algorithm can also be shown
to minimize the following deterministic cost function:

ξQN,n =

nX
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„
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where μi is the step-size, di is the reference signal, xi andwn are the
input data vector and the coefficient vector, both with equal length
N , and RQN,0 is the correlation matrix at instant 0. Although in-
teresting from an algebraic point of view, this cost function provides
limited insight into the algorithm behavior. This algorithm also takes
into account a constraint in the Hessian matrix, which is responsible
for its good numerical properties. Minimizing (1) and considering
the constraint
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the following equations for the adaptation algorithm are obtained:
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where en is the a priori output error given by en = dn − x
T
nwn−1,

and τn and tn are given by:

τn = x
T
nR

−1
QN,n−1xn (6)

tn = R
−1
QN,n−1xn. (7)

2.1. Minimum-Disturbance Description

An alternative cost function that yields the same algorithm described
by (3)–(7) can be represented by a minimum-disturbance approach.
The idea is to use some quadratic norm of the coefficient disturbance
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from iteration n− 1 to n, but which also takes into account the zero
instantaneous a posteriori output error, which is one of the features
of this algorithm. The QN algorithm can be obtained as a solution to
the following convex minimization problem:

ξQN,n = ‖wn −wn−1‖2RQN,n−1
s.t.

(
dn − x

T
nwn = 0

x
T
nR

−1
QN,nxn = 1/2

(8)

where the weighted quadratic norm is defined as ‖x‖2A = x
T
Ax.

This minimum-disturbance description has been used before to
derive and analyze adaptation algorithms, see, e.g., [3, 5]. However,
in [5] this approach was used to derive and evaluate a least pertur-
bation characteristic of the normalized least mean squares (NLMS)
algorithm with step-size μ = 1, and in [3] this approach was general-
ized. Our approach and objectives in this paper are slightly different:
it is to bring the derivation of different adaptation algorithms under
the same framework and to provide a convex cost function that is
easy to work with and which gives some insight into the algorithm
behavior.

Using Lagrange multipliers [8] to minimize the cost function
described in (8), we can derive this algorithm with respect to wn,
yielding

ξQN,n = ‖wn −wn−1‖2RQN,n−1
+ α

h
dn − x

T
nwn

i
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2
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Substituting this result in the zero instantaneous a posteriori error
constraint to find α, yields
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T
n

 
wn−1 +

αR
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QN,n−1xn
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where τn is given by (6). Now, using this value of α in (9) we obtain
the same recursion formula for the update of the filter coefficients
vector, (3).

The inverse correlation matrixR
−1
QN,n−1 is computed so that the

algorithm fits in the quasi-Newton category [7], which can be ac-
complished in the same way as in [4], resulting (4). Substituting (4)
into (2), pre- and post-multiplied by x

T
n and xn, respectively, we

obtain the value of μn as in (5).
As can be seen, (8) helps us understand and to explain the QN

algorithm much better than (1). The idea of a new approach to inter-
pret adaptation algorithms using the minimum-disturbance descrip-
tion can be extended to other adaptation algorithms.

3. NLMS ALGORITHM

A minimum-disturbance description for the NLMS algorithm is
given by [5]

ξNLMS,n = ‖wn −wn−1‖2 s.t. dn = x
T
nwn. (10)

The solution, after minimizing ξNLMS,n with respect to wn, is
the NLMS algorithm with step-size equal to 1:

wn = wn−1 +
en

‖xn‖2 xn. (11)

4. RLS ALGORITHM

The RLS algorithm has certainly become one of the preferred alter-
natives to gradient-type algorithms in applications where fast conver-
gence is needed. The conventional form of the RLS algorithm can be
derived as a recursive implementation that minimizes the weighted
sum of the squares of the a posteriori output errors. One possible
form of the RLS cost function can be written as [1]

ξRLS,n =

nX
i=1

μi,n

“
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T
i wn

”2

(12)

where the weights μi,n, i = 1, · · · , n, control the importance of past
information and are called forgetting factors:

μi,n =
nY

j=i+1

μj = μn μi,n−1.

The vector wn which minimizes ξRLS,n can be obtained taking
the derivative of ξRLS,n with respect to wn and setting it equal to
zero.

The same algorithm can be interpreted using the minimum-
disturbance description, where the instantaneous squared a posteri-
ori output error is also taken into account:

ξRLS,n = μn‖wn −wn−1‖2RRLS,n−1
+
“
dn − x

T
nwn

”2

. (13)

Solving this minimization problem with respect to wn, we get

∇ξRLS,n = 2μnRRLS,n−1 (wn −wn−1)

− 2
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“
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wn = μnRRLS,n−1wn−1 + dnxn.

(15)
Here we can define the equation for the correlation matrix as
RRLS,n = μnRRLS,n−1 + xnx

T
n . Continuing the solution to

find the update equation for the coefficient vector, we obtain

RRLS,nwn =
“
μnRRLS,n−1 + xnx

T
n

”
wn−1

− xnx
T
nwn−1 + dnxn (16)

⇒ RRLS,nwn = RRLS,nwn−1 + enxn. (17)
Multiplying both sides of the equation above by the inverse of the
correlation matrix, R−1

RLS,n, which can be calculated using the ma-
trix inversion lemma, we obtain the equations of the RLS algorithm:

wn = wn−1 + enR
−1
RLS,nxn (18)

R
−1
RLS,n =

1

μn

„
R
−1
RLS,n−1 −

tnt
T
n

μn + τn

«
. (19)

4.1. Leakage QN Algorithm

In [9], a new algorithm was developed with the objective of relax-
ing the normalization of the QN algorithm but retaining its robust
convergence properties. Using the minimum-disturbance descrip-
tion, it is straighforward to incorporate the constraint to any cost
function. The constraint of (2) was used together with the RLS cost
function, resulting in the leakage quasi-Newton (LQN) algorithm.
We can calculate the step-size for which this constraint is satisfied.
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One way to do this is by directly substituting (19) in the constraint
x

T
nR

−1
RLS,nxn = 1/2 and solving it with respect to μn, which re-

sults in μn = τn.
The LQN algorithm does not have user-defined parameters to

adjust, which gives a different degree of robustness, avoiding bad
choice of the step-size by the user, and giving fast convergence speed
and low misadjustment, lower than that of the QN algorithm [9].

5. LEAKAGE LS ALGORITHM

A different approach to the LS cost function than that presented in
Section 4 is to use a simpler weight factor instead of the one used in
(12). The parameter μn acts only in its respective quadratic a poste-
riori error, instead of upon the whole sequence of past a posteriori
errors, as in the RLS algorithm:

ξLLS,n =
nX

i=1

μi

“
di − x

T
i wn

”2

. (20)

This cost function can be modified using the minimum-disturb-
ance description as we did for the RLS algorithm:

ξLLS,n = ‖wn −wn−1‖2RLLS,n−1
+ μn

“
dn −w

T
n xn

”2

. (21)

Minimizing this cost function gives:

wn = wn−1 +
μnen

1 + μnτn

tn (22)

R
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μntnt
T
n

1 + μnτn
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where the inverse of the correlation matrix was obtained using the
matrix inversion lemma in the correlation matrix update formula,
RLLS,n =

Pn

i=1
μixix

T
i = RLLS,n−1 +μnxnx

T
n . This algorithm

is similar to the BEACON algorithm [10], the difference residing in
the method used to update the step-size.

One can use the method presented in [10] to calculate the step-
size and to get exactly the BEACON algorithm. However, using
the constraint of (2) another algorithm can be developed that does
not need user-defined parameters with the step-size given by μn =
(2τn − 1) /τn. This equation was derived by directly substituting
the (23) in the constraint, (2). This algorithm, called leakage least
squares (LLS), was analyzed in [11] under persistently and non-
persistently exciting input signals, and presented poor convergence
performance. However, a modification in this algorithm using box
constraints such that α < x

T
nR

−1
LLS,nxn < β was also suggested

in [11], resulting in a robust algorithm for any kind of input signal.
As in the previous case, the constraint does not directly modify

the derivation of the algorithm’s equations. Using an interior-point
method, called the logarithmic barrier [8], we can solve this new
minimization problem obtained by the two inequality functions:

min
μn

−
„
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log
“
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T
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−
„
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log
“
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”
(24)

where α and β are the limits of the constraints, and p1 and p2 control
the barrier precision. As pi increases, so does the precision.

Solving this problem one can get the following step-size update
equation:

μn =
τn (p1 + p2)− (αp1 + βp2)

τn (αp1 + βp2)
. (25)

The step-size must always be kept positive. We opted to use a
hard decision, setting μn = 0 whenever (25) produced a negative
value. The convergence analysis of this algorithm can follow the
same considerations used for the BEACON algorithm [10].

6. CONVEX LS ALGORITHM

If we closely examine the minimum-disturbance description of the
algorithms presented in the last two sections, a natural, perhaps triv-
ial, modification of the objective function is to make it a convex
combination between minimum disturbance and a posteriori output
error, as follows:

ξCONV,n = (1− μn)‖wn −wn−1‖2RCONV,n−1

+ μn

“
dn − x

T
nwn

”2

(26)

If we set the derivative of ξCONV,n with respect to wn equal to
zero and solve for wn, we obtain

wn = wn−1 +
μnentn

1− μn + μnτn

(27)

R
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„
R
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1− μn + μnτn
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(28)

where (28) was obtained directly from the development of the algo-
rithm and using the inverse matrix lemma in the correlation matrix,
RCONV,n = (1− μn)RCONV,n−1 + μnxnx

T
n .

This algorithm was presented before using different approaches.
In [12] this algorithm was developed as a modified RLS algorithm
using another convex optimization approach, called optimal bound-
ing ellipsoids (OBE). Interesting enough, this algorithm also be-
comes equivalent to the RLS algorithm when 1 − μn = λ < 1,
which has already been named LMS-Newton in [13]. Indeed, the
same algorithm can be obtained if we minimize

ξCONV,n =
nX

i=1

nY
j=i+1

(1− μj)μi

“
di − x

T
i wn

”2

(29)

with respect town.

7. SIMULATION RESULTS

To emphasize the good convergence capabilities of the LLS algo-
rithm and the effect of the constraints applied to it, this section pro-
vides a simulation comparison between the LLS, RLS, and QN al-
gorithms. A sinusoidal signal, which is a nonpersistently exciting
signal, is used as input signal to an adaptive system in a system iden-
tification configuration. The unknown system is an FIR filter with 5
coefficients normalized to unit norm: H(z) = (1 + z−1 + z−2 +

z−3 + z−4)/
√

5.
The algorithm parameters were adjusted to yield the best perfor-

mance of each algorithm in terms of misadjustment: μRLS = 0.99
for the RLS algorithm; p1 = 10, p2 = 1, α = 0.0001 and β = 0.1
for the LLS algorithm. The simulation results presented were aver-
aged over an ensemble of 100 simulations. The signal-to-noise ratio
(SNR) used was constant and equal to 40 dB.

Figure 1 shows the learning curve of mean squared errors (MSE)
for the first 250 iterations and after 3000 iterations. As expected, the
RLS algorithm diverges after some iterations in the presence of non-
persistently exciting signals, whereas the QN and LLS algorithms
did not diverge.
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Fig. 1. Learning curves of RLS, QN and LLS algorithms, for the
first 250 iterations and after 3000 iterations. The RLS algorithm is
diverging around 3200 iterations.

It can also be seen that the LLS algorithm has the best perfor-
mance, followed by that of the QN algorithm, which has a 3 dB mis-
adjustment due to normalization. The LLS algorithm, on the other
hand, converges faster than both QN and RLS algorithms, and with a
misadjustment error lower than that of the QN algorithm and similar
to that of the RLS algorithm.

8. CONCLUSIONS AND CRITIQUE

This work further investigated the derivation of adaptation algo-
rithms via a coefficient-vector minimum-disturbance approach com-
bined with constraints involving the a posteriori output error and
estimate of the Hessian matrix. Although a similar approach has
been used before to present alternative derivations of the NLMS
algorithm and its variations, we have showed that a proper choice
of the quadratic norm used to measure the disturbance of the coef-
ficients can yield different LS-like or QN-like algorithms. Besides
giving us tools to derive new algorithms, the approach described
herein puts all algorithms under the same framework and provides
us insight on their expected behavior.

The framework just described allows us to introduce different
constraints to the adaptation algorithms together with the cost func-
tion, as was the case studied for the positive definiteness of the corre-
lation matrix. This work showed that with proper choice of the con-
straints, robust algorithms that also have fast convergence speed can
be derived. Another interesting aspect of this framework is the pre-
sentation of an alternative deterministic objective function for LS-
like algorithms that does not include n instances of the coefficient
vector. Although a detail that might easily pass unnoticed, the al-
ternative deterministic objective function allows us to optimize with
respect to the convergence factor, μn, without the difficulty imposed
by the implicit dependence of the n instances ofwn on μn.

This paper also introduces a new robust leakage algorithm that
maintains its convergence independently of the type of input signals
present in the system. Simulation results showed that the LLS algo-
rithm can be an option where fast and robust adaptation algorithms
are needed.

The derivation of adaptation algorithms and variable forgetting
factors are a subject of further study, and this work offers a differ-

ent perspective that may attract and amuse the expert and help the
novice.
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