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ABSTRACT

We propose a new approach to adaptive system identification when
the systemmodel is sparse. The approach applies �1 relaxation, com-
mon in compressive sensing, to improve the performance of LMS-
type adaptive methods. This results in two new algorithms, the
zero-attracting LMS (ZA-LMS) and the reweighted zero-attracting
LMS (RZA-LMS). The ZA-LMS is derived via combining a �1 norm
penalty on the coefficients into the quadratic LMS cost function,
which generates a zero attractor in the LMS iteration. The zero
attractor promotes sparsity in taps during the filtering process, and
therefore accelerates convergence when identifying sparse systems.
We prove that the ZA-LMS can achieve lower mean square error
than the standard LMS. To further improve the filtering performance,
the RZA-LMS is developed using a reweighted zero attractor. The
performance of the RZA-LMS is superior to that of the ZA-LMS nu-
merically. Experiments demonstrate the advantages of the proposed
filters in both convergence rate and steady-state behavior under spar-
sity assumptions on the true coefficient vector. The RZA-LMS is
also shown to be robust when the number of non-zero taps increases.

Index Terms— LMS, compressive sensing, sparse models,
zero-attracting, l1 norm relaxation

1. INTRODUCTION

The least mean square (LMS) algorithm, introduced by Widrow and
Hoff [1], is a popular method for adaptive system identification. Its
applications include echo cancellation, channel equalization, inter-
ference cancellation, and so forth. In many scenarios, impulse re-
sponses of unknown systems can be assumed to be sparse, contain-
ing only a few large coefficients interspersed among many negligible
ones. Using such sparse prior information can improve the filtering
performance. However, standard LMS filters do not exploit such in-
formation. In the past years, many algorithms exploiting sparsity
were based on applying a subset selection scheme during the fil-
tering process, which was implemented via statistical detection of
active taps [2, 3, 4] or sequential partial updating [5, 6]. Other vari-
ants assign proportional step sizes to different taps according to their
magnitudes, such as the proportionate normalized LMS (PNLMS)
and its variations [7, 8].

Motivated by LASSO [9] and recent progress in compressive
sensing [10, 11, 12], we propose an alternative approach to identify-
ing sparse systems using LMS filters. The basic idea is to introduce a
penalty that favors sparsity in the cost function. We first incorporate
a �1 norm penalty on the coefficients into the quadratic cost function
of the standard LMS. This results in a modified LMS update with
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a zero attractor for all the taps, naming the zero-attracting LMS
(ZA-LMS). We analytically demonstrate that the ZA-LMS achieves
better steady-state performance than that of the standard LMS for
sparse models. To further improve the filtering performance, the
reweighted zero-attracting LMS (RZA-LMS) is proposed, which
employs reweighted step sizes of the zero attractor for different
taps, inducing the attractor to selectively promote zero taps rather
than uniformly promote zeros on all the taps. Experimental results
illustrate that the proposed filters exceed the standard LMS in both
transient and steady-state performance for sparse systems; and the
RZA-LMS outperforms the ZA-LMS numerically. Furthermore,
the RZA-LMS shows robustness when the number of non-zero taps
increases, with little loss in performance with respect to the standard
LMS in non-sparse situations.

The paper is organized as follows. Section 2 develops the ZA-
LMS and RZA-LMS algorithms for sparse systems. In Section 3,
numerical simulation results are provided. Finally, we conclude the
paper and discuss possible future directions in Section 4.

Notations: In the following parts of paper, matrices and vectors
are denoted by boldface upper case letters and boldface lower case
letters, respectively, the superscripts (·)T and (·)−1 denote the trans-
pose and inverse operators, respectively, the operator ‖ · ‖1 denotes
the �1 norm , tr(·) denotes the trace operator, and E[·] denotes the
expectation operator.

2. ALGORITHMS

2.1. Review of the Standard LMS

Let y(n) be a sample of the observed output signal

y(n) = w
T
x(n) + v(n), (1)

where w = [w0, w1, · · · , wN−1]
T is the filter coefficient vec-

tor, e.g., a FIR channel impulse response; x(n) = [x(n), x(n −
1), · · · , x(n − N + 1)]T denotes the vector of input signal x(n),
and v(n) is the observation noises assumed to be independent with
x(n).

The goal of LMS-type filters is to sequentially estimate the un-
known coefficient vector using the input signal x(n) and the desired
output y(n). Let w(n) be the estimated coefficient vector of the
adaptive filter at iteration n. In the standard LMS, the cost function
L(n) is defined as

L(n) =
1

2
e2(n), (2)

where
e(n) = y(n)−w

T (n)x(n) (3)

is the instantaneous error.

3125978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



The filter coefficient vector is then updated by

w(n + 1) = w(n)− μ
∂L(n)

∂w(n)
= w(n) + μe(n)x(n), (4)

where μ is the step size controlling convergence and the steady-state
behavior of the LMS algorithm. Denote R as the covariance matrix
of the input vector x(n) and λmax as its maximum eigenvalue. The
well-known convergence condition for the LMS is

0 < μ <
1

λmax

. (5)

Under the independence assumption, the steady-state excess MSE is

Pex(∞) = lim
n→∞

E

��
(w(n)−w)T

x(n)
�2
�

=
η

2− η
P0, (6)

where P0 is the power of observation noise

P0 = E[v2(n)], (7)

and
η = tr

�
R(I− μR)−1

�
. (8)

2.2. Zero-Attracting LMS Algorithm (ZA-LMS)

In the ZA-LMS, a new cost function L1(n) is defined by combin-
ing the instantaneous square error with the �1 norm penalty of the
coefficient vector

L1(n) =
1

2
e2(n) + γ‖w(n)‖1. (9)

Using the gradient descent updating, the ZA-LMS filter update is
defined as

w(n + 1) = w(n)− μ
∂L1(n)

∂w(n)

= w(n)− ρ sgn w(n) + μe(n)x(n),

(10)

where ρ = μγ and sgn(·) is a component-wise sign function defined
as

sgn(x) =

�
x/|x| x �= 0

0 x = 0
. (11)

Comparing the ZA-LMS update (10) to the standard LMS up-
date (4), the ZA-LMS has an additional term −ρ sgnw(n), which
always attracts the tap coefficients to zero. We call this the zero
attractor, whose strength is controlled by ρ. Intuitively, the zero at-
tractor will speed-up convergence when the majority of coefficients
of w are zero, i.e., the system is sparse. The convergence condition
of the ZA-LMS is provided in the following theorem.

Theorem 1. If μ satisfies (5), the mean coefficient vector E [w(n)]
converges to

E [w(∞)] = w −
ρ

μ
R
−1E [sgnw(∞)] . (12)

Proof. Denoting w̃(n) = w(n)−w, (4) is equivalent to

w̃(n) =
�
I− μx(n)x(n)T

�
w̃(n−1)−ρ sgn w(n−1)+μv(n)x(n).

(13)
Taking expectations on both sides of (13), there is

E [w̃(n)] = (I− μR) E [w̃(n− 1)]−ρ E [sgn w(n− 1)] . (14)

Note that the vector ρ E [sgn w(n− 1)] is bounded between −ρ1
and ρ1, where 1 is a vector of 1’s. Therefore, E [w̃(n)] converges if
the maximal eigenvalue of (I− μR) is less than 1, which is satisfied
by (5). Since E [w(n)] = E [w̃(n)] + w, E [w(n)] also converges
with the limiting vector shown in (12).

One can see that the convergence condition of the ZA-LMS and
the standard LMS is the same, which is independent of ρ. Eq. (12)
implies the ZA-LMS filter returns a biased estimate of the true co-
efficient vector. However, we show that with appropriate ρ, the ZA-
LMS is able to yield lower MSE than the standard LMS for truly
sparse systems.

Theorem 2. LetNZ denote the index set of non-zero taps, i.e.,wi �=
0 for i ∈ NZ. Assuming ρ is sufficiently small so that for every
i ∈ NZ

E[sgn wi(∞)] = sgn wi, (15)

the excess MSE of the ZA-LMS filter is

Pex(∞) =
η

2− η
P0 +

α1

(2− η)μ
ρ

�
ρ−

2α2

α1

	
, (16)

where P0 and η are defined in (7) and (8), respectively,

α1 = E


sgnw (∞)T (I− μR)−1 sgn w (∞)

�
, (17)

and
α2 = E [‖w (∞) ‖1]− ‖w‖1. (18)

The proof of Theorem 2 is similar to the derivation of (6) in [1]
and is omitted for lack of space. It is easy to see that α1 is always
positive, and the range of α1 is

0 < α1 ≤
N

1− μλmax

. (19)

Note that the first term on the RHS of (16) is the excess MSE of the
standard LMS filter. Therefore, when α2 > 0, we can expect lower
MSE than the standard LMS, i.e., when ρ is selected between 0 and
2α2/α1,

Pex(∞) <
η

2− η
P0.

To further specify α2, we have the following result.

Lemma 1. LetZ andNZ be the index sets of zero taps and non-zero
taps respectively. If w(n) is assumed to be Gaussian distributed, a
first-order approximation of α2 is given by

α2 �
�
i∈Z


2

π
Φii(∞)−

ρ

μ

�
i∈NZ

|bi|, (20)

where Φii(∞) and bi are the i-th element of the diagonal of Φ(∞)
and b respectively, defined as

Φ(∞) = E[(w(∞)−w) (w(∞)−w)T ]

and
b = R

−1E [sgnw(∞)] .

Proof.

α2 =
�
i∈Z

E [|wi(∞)|] +
�

i∈NZ

(E [|wi(∞)|]− |wi|) . (21)
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We then use the following fact: Assuming a random variable z is
Gaussian distributed with mean ν and variance σ2,

E[|z|] =

�
2

π
E[z2] + o

�
|ν|

σ

�
when |ν| � σ, (22)

and
E[|z|] = |ν|+ o

�
σ

|ν|

�
when |ν| 	 σ. (23)

Since wi(∞) is a Gaussian random variable, with (12), (22), and
(23), the first order approximation of α2 is

α2 �
�
i∈Z

�
2

π
E [wi(∞)2]−

�
i∈NZ

|E [wi(∞)]−wi|

=
�
i∈Z

�
2

π
Φii(∞)−

ρ

μ

�
i∈NZ

|bi|.

(24)

There are two competing terms on the RHS of (20). The first
one varies about zero for taps associated with zero coefficients of
w. The second term is a bias, which is due to the shrinkage of the
taps associated with non-zero coefficients of w. When the zero taps
outnumber the non-zero taps, the first term dominates the second
one, and positive α2 ensues along with an associated reduction in
MSE.

2.3. Reweighted Zero-Attracting LMS Algorithm(RZA-LMS)

Large α2 is crucial for the ZA-LMS since it results in a greater per-
formance gain and larger margin for choosing ρ. However, the bias
term in (20) reduces α2 and then limits the MSE performance gain.
This behavior comes from the fact that the shrinkage parameter in
the ZA-LMS does not distinguish between zero taps and non-zero
taps. Since all the taps are forced to zero uniformly, its performance
would deteriorate for less sparse systems. Motivated by reweight-
ing in compressive sampling [11], we propose a heuristic approach
to reinforce the zero attractor called the reweighted zero-attracting
LMS (RZA-LMS).

The RZA-LMS is derived via the new cost function

L2(n) =
1

2
e2(n) + γ′

N�
i=1

log(1 + |wi|/ε′). (25)

The log-sum penalty
�

N

i=1
log(1 + |wi|/ε′) has been introduced

as it behaves more similarly to the �0 norm than ‖w‖1 [11]. The
coefficient vector is then updated by

wi(n + 1) = wi(n)− ρ
sgn wi(n)

1 + ε|wi(n)|
+ μe(n)xi(n), (26)

or equivalently, in vector form

w(n + 1) = w(n)− ρ
sgn {w(n)}

1 + ε|w(n)|
+ μe(n)x(n), (27)

where ρ = μγ′/ε′ and ε = 1/ε′.
The RZA-LMS selectively shrinks taps with small magnitudes.

The reweighted zero attractor takes effect only on those taps for
which magnitudes are comparable to 1/ε; and there is little shrink-
age exerted on the taps whose |wi(n)| 	 1/ε. In this way, the bias
of the RZA-LMS can be reduced.
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Fig. 1. Tracking and steady-state behaviors of 16-order adaptive fil-
ters, driven by white input signal.

3. EXPERIMENTAL RESULTS

In this section, the performance of the ZA-LMS (10) and the RZA-
LMS (27) are compared with that of the standard LMS filter. Three
experiments have been designed to demonstrate their tracking and
steady-state performance.

In the first experiment, there are 16 coefficients in the time vary-
ing system. Initially, we set the 5th tap with value 1 and the others
to zero, making the system have a sparsity of 1/16. After 500 iter-
ations, all the odd taps are set to 1, while all the even taps remains
to be zero, i.e., a sparsity of 8/16. After 1000 iterations all the even
taps are set with value -1 while all the odd taps are maintained to be
1, leaving a completely non-sparse system. The input signal and the
observed noise are white Gaussian random sequences with variance
of 1 and 10−3, respectively. The three filters (LMS, ZA-LMS, and
RZA-LMS) are run 200 times. The parameters are set as μ = 0.05,
ρ = 5×10−4 and ε = 10. Note that we use the same μ and ρ for the
three filters. The average estimate of mean square deviation (MSD)
is shown in Fig. 1. As we can see from the MSD results, when the
system is very sparse (before the 500th iteration), both the ZA-LMS
and the RZA-LMS yield faster convergence and better steady-state
performance than the standard LMS. The RZA-LMS achieves lower
MSD than the ZA-LMS. After the 500th iteration, as the number of
non-zero taps increases to 8, the performance of the ZA-LMS dete-
riorates while the RZA-LMS maintains the best performance among
the three filters. After 1000 iterations, the RZA-LMS still performs
comparably to the standard LMS, even though the system is now
completely non-sparse.

The system in the second experiment is the same as the first one,
except the coefficient switching times are set to the 7000th iteration
and the 14000th iteration, respectively. The input signal x(n) is now
a correlated signal generated by x(n) = 0.8x(n − 1) + u(n) and
then normalized to variance 1, where u(n) is a white Gaussian noise.
The variance of the observed noise is set to 10−3. The filter param-
eters are set as μ = 0.015, ρ = 3 × 10−5, and ε = 10. Fig. 2
shows the MSD of the three filters, and similar performance trends
are observed as in the first experiment. Observe that at the beginning
of the iterations (e.g., from iteration 7000 to 8500), all the three fil-
ters converge at a nearly the same rate. After the 8500th iteration,
the convergence of the RZA-LMS accelerates, due to its selective
shrinkage.

The third experiment simulates a 256-tap system with 28 non-
zero coefficients. The impulse response is shown in Fig. 3. The
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Fig. 2. Tracking and steady-state behaviors of 16-order adaptive fil-
ters, driven by correlated input signal.
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Fig. 3. The impulse response of the system in the third experiment.

driving signal and observed noise are the same as in the first exper-
iment. μ is set to 5 × 10−3 in the three filters, and ε is set to 10.
This time we select different values of ρ for the ZA-LMS and the
RZA-LMS to yield the best MSE, where ρ is 2.5×10−6 for the ZA-
LMS and 10−5 for the RZA-LMS. The simulations are performed
200 times and the average excess MSE is shown in Fig. 4. One
sees that for this long sparse system, the zero-attracting algorithms
significantly outperform the standard LMS, as measured by faster
convergence rate and lower steady-state MSE.

4. CONCLUSION

In this paper, two novel adaptive filters are proposed for sparse sys-
tem identification. The ZA-LMS incorporates a �1 norm penalty of
the coefficients into its cost function, which resulted in a shrink-
age in the update formula. This shrinkage accelerates the conver-
gence rate when the majority of coefficients are zero. A theorem
was given showing that the ZA-LMS algorithm results in reduced
MSE. The RZA-LMS was proposed to further improve the filtering
performance, where a reweighted zero attractor is devised to per-
form selective coefficient shrinkage. With the same parameters, the
RZA-LMS is superior to the ZA-LMS in both convergence rate and
steady-state behavior. Experiments demonstrate that the ZA-LMS
and the RZA-LMS improve on the standard LMS in both transient
and steady-state performance when the system is sparse. Further-
more, the RZA-LMS performs robustly for non-sparse systems.

Our future work will include how to choose the parameters of
zero-attracting algorithms in a more systematic way. The zero at-
tractor can also be implemented in the NLMS filter for identifying
sparse systems. Furthermore, the method of �1 norm penalization
can be further extended to other types of adaptive filters, such as the
RLS filter and the adaptive Kalman filter.
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Fig. 4. Tracking and steady-state behaviors of 256-order adaptive
filters, driven by white input signal.
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