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ABSTRACT
In this paper, we propose an efficient design of proportion-

ality factors in the recently established algorithm named Krylov-
proportionate normalized least mean-square (KPNLMS), which is
an extention of the PNLMS algorithm to nonsparse (or dispersive)
unknown systems by means of a Krylov subspace. The design-
ing task takes a form of minimizing the number of iterations that
is needed for an upper bound of the system mismatch to reach a
specified target value. The minimization is performed under several
constraints related to numerical stability, computational require-
ments, and nonnegativity, and its closed-form solution is derived.
Numerical examples demonstrate that the proposed design signif-
icantly reduces the number of iterations needed to achieve target
values of system mismatch especially when a low level of system
mismatch is required.

Index Terms— proportionate adaptive algorithm, Krylov sub-
space, constrained optimization

1. INTRODUCTION

This paper presents an efficient adaptive algorithm named �-law
Krylov-proportionate normalized least mean-square (MKP-NLMS),
originating from the Krylov-proportionate adaptive filtering [1]. The
basic concept of the Krylov-proportionate adaptive filtering is to
shift the proportionate adaptive filtering paradigm1 [2–4] from ‘ex-
ploiting the sparsity of an unknown system’ to ‘sparsifying a not nec-
essarily sparse unknown-system by means of statistical information’.
In [1], the main focus is on proving that it is possible to sparsify non-
sparse systems by using a certain Krylov subspace into which the
statistical information is incorporated. The proportionality factors
given to each basis vector of the subspace are determined based on
the idea of an improved version in [4], as it can straightforwardly be
extended to the Krylov-proportionate adaptive algorithm.

In [6], another improved version named �-law proportionate
normalized least mean-square (MPNLMS) algorithm has been pro-
posed. The MPNLMS algorithm adjusts the proportionality factors
based on an objective criterion (unlike the other versions), and it
has been shown to exhibit much faster convergence than the original
PNLMS algorithm [2] during the whole adaptation process.

The goal of this paper is to derive an optimal design of the
proportionality factors based on objective criteria for the Krylov-
proportionate adaptive algorithm, and realize it in a computation-
ally efficient way. For this purpose, we firstly investigate optimal
designs for a deterministic steepest descent method with propor-
tionality factors, of which a stochastic approximation is the Krylov-
proportionate adaptive algorithm. We formulate the designing prob-
lem as optimization problems with two different measures: (i) the
so-called overall convergence and (ii) what we call �-convergence.

1The proportionate adaptive filtering has been proposed originally in [2],
and its improved versions have been proposed, e.g., in [3, 4]. The idea is to
assign an individual step size to each filter tap, and the step size is roughly
proportional to the absolute value of the current tap weight estimate. In [5],
it is shown that the proportionate normalized least mean-square (PNLMS)
algorithm projects the current filtering vector with respect to time-varying
metric onto the same hyperplane as the NLMS algorithm, and the algorithm
is generalized by using the set-theoretic adaptive filtering approach.

We present a solution to each problem, and show that the solution to
the second one is able to be approximated in the adaptive algorithm
with low computational complexity. We thus propose, based on the
second one, an efficient design for the proposed stochastic algorithm,
followed by numerical examples and conclusion.

2. PROBLEM STATEMENTS

Throughout the paper, we let � and � denote the sets of all real
numbers and nonnegative integers, respectively. We consider the
following linear system model:

�� �� �
�

��
� � ��� � � �� (1)

where �� �� ���� ����� � � � � �������
� � �

� is the input vector
at time � with the input process �������, �� � �

� the unknown
system, ������� � � the output process, and ������� � � the
noise process. For convenience, we make the following assumptions.

1. The input is white and stationary.2

2. The input and noise processes are statistically orthogonal to
each other, i.e., ������� � �.

By Assumption 1, the autocorrelation matrix is � �� �����
�

� � �
	��� � ���� , where 	� is the variance of the input signal and ��
denotes the ��� identity matrix for � � �

� �� �����. Moreover,
by Assumption 2, the cross-correlation vector is � �� ������� �
��� � �

� . Given a filter � � �
� , the mean-square error (MSE)

of the filter output under Assumption 2 is given as


���� �� ����� � �
�

� ��
�� � 	�� �

�	
�

�
�������� (2)

It is silently assumed in (2) that � is positive definite. From (2),
it is seen that the stochastic minimum MSE (MMSE) filter, i.e., the
minimizer of (2), is given by the deterministic vector �� under the
natural assumption. Also (2) implies under Assumptions 1 and 2 that
the MSE is a criterion equivalent to the system mismatch:


���� �� 	�� �
�	
�
	��	

��
� � � �� � (3)

Given available data �������and �������, the problem is to esti-
mate ��.

3. �-LAW KRYLOV-PROPORTIONATE NLMS
ALGORITHM

3.1. Proposed Algorithm

Let �� and �� be estimates of � and �; e.g., �� and �� are com-
puted by sample averages with/without exponential window. Given

2If the input process is highly colored, the whitening (or preconditioning)
will be used with the proposed algorithm so that the input process becomes
nearly white. Although perfect whitening is almost impossible in nonstation-
ary environments, it is shown in [1] that KPNLMS performs very well even
in highly nonstationary environments.
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� � ��� �� � � � � ��, define an orthogonal matrix � �� ��� ��� �

�
��� (with �� � �

��� and �� � �
������� ) such that

����� � ������ ��� �� 	
������ ����� � � � � ��
���

��� � �
� and

����� � ������� ��� � �
� . Here, ���� stands for range and the

superposition ���� the orthogonal complement. Also define

�� �� 
�����
���
� � � � � � �

���
�� �� �

�

� Æ�� � � � � Æ�� �� �
���

� � ���� � � � �� (4)

where ����� � � (� � �� �� � � � � �) and Æ� � � are the proportional-
ity factors. Then, the proposed algorithm is given as follows:

���� � �� � ��
	�����

�������
����� � � �� (5)

where �� �� ����
� and 	���� �� ���� � 
�, 	� � �

� .
Until reasonable estimates of � and � are obtained, we simply let
�� �� �� . Because of the special structure of��, we have [1]

���� � �� ����� � Æ������
� �� � Æ���� (6)

where ���� �� 
�����
���
� � � � � � �

���
� � � �

��� . (6) suggests that
(i) there is no need to compute�� and (ii) the update equation (5) re-
quires only ���� computational complexity (Note: A typical value
of � is � or �, which is much smaller than � in many applications).

The focus in this work is on a strategic design of ��, which
is explored in the remaining of this section. Defining the Krylov
coefficients and its corresponding input vector as �� �� ���� and
�� �� ����, respectively, (5) can be rewritten as follows:

���� � �� � ��
�	�����

�������
����� � � �� (7)

where �	���� �� �����
�, 	� � �� . (7) is a transform-domain
expression of (5). In the transform domain, the MSE is given under
Assumption 2 as

������ �� 
��
� � �
�
����� � �

� ��� � ��� ���� �
�
����

where �� �� ���� and �� �� ����. In [1], it has been shown
that �� has a sparse structure when the input signal is fairly uncor-
related, thus the idea of proportionate-type adaptive algorithms can
be extended.3 In [6], a strategic design of the diagonal matrix for the
PNLMS algorithm is proposed based on an objective criterion. How-
ever, because of the special structure of �� in (4), an extention of
the idea in [6] is not straightforward. In fact, the special structure
(coming from computational requirements) imposes an additional
constraint on the optimization problem, yielding an interesting dif-
ference from the original formulation. In the following subsection,
we present two problem formulations for the design of��.

3.2. Two Formulations for Designing��

With the gradient � ������ � � ���� ����, the steepest descent
algorithm with proportionality factors for ������ is given as fol-
lows:

���� �� �� �
�

�
���

������� � �� � ���
����� ��

��� (8)

where � � � is a small constant. We mention that (8) is a deter-
ministic algorithm, and (7) is its stochastic approximation. As (8) is
simpler than (7) to investigate an optimal design of �� , we explore
an optimal design for (8), and exploit it to design�� for (7).

3In [7], it is shown that near-optimal MSE performance can be achieved
by using a low-dimensional Krylov subspace.

Defining the error vector ��� �� � �����
� � �����

� � � � � � �����
� �� ��

�� ��
�, it is verified from (8) that

����� � ��� � ���
������ �

��
���

��� � ���
������� (9)

By Assumption 1, we have �� � ���� and (9) is reduced to

����� �

��
���

��� � �������� (10)

where � �� ��� � �. We assume that � 
 ��
���
� 
 �� � ������,

	� � �, 	� � ��� �� � � � � ��, where ������� �� �
�����
� �� � � � ��

�
���
� �� Æ�, � � �, and �� is the solution to the equation �� � �
	��. Then, from (10), for � � �� �� � � � � � , we obtain

� �����
� � �

�����
����
���

��� ��
���
� � �����

�

����� 

����
���

	
�	


���
� � �����

� �� (11)

Instead of the error � �����
� � itself, we consider its upper bound given

in (11), as it is more tractable. We remark that the bound is tight,
provided that � 
 ��

���
� 
 �, 	� � �. For numerical stability, we

introduce the condition [2]:
��

��� �
���
� � � , 	� � �. In design-

ing ��, we wish to minimize the number of iterations required for
convergence. A quantitative measure for convergence, called overall
convergence, is introduced in [6, Definition 2], according to which
and (11) we consider the following condition for a given � � �.

����
���

	
�	


���
� � �����

� � 
 �� 	� � ��� �� � � � � �� (12)

� �
�
� 	

��� �
�

�
��
� �����

� �

�
� 	� � ��� �� � � � � �� (13)

� �
�
����� �

�

�


�
� (14)

Here, �� �� ��� �� � � � � ��� � �� for any � � �� , and

	
��� ����

���
� � �

���
� � � � � � �

���
����

� � ��� ��� (15)

���� ���	��� 	��� � � � 	���� � ��� ����� (16)


 ��

	
��
� �����

� �

�
� ��

� �����
� �

�
� � � � � ��

� �����
� �

�


�
� �� � (17)

Note that ���� is different from the diagonal matrix ��, and the
height of ���� depends on � � �. The problem is thus formulated
as follows.
Problem 1: Given � � �,

���
��

� 	��������� � ��� (18)

�
�����
� � �

�����
� � � � � � �

���
� � 	� � � (19)

�
���
� � �� 	� � ��� �� � � � � ��� 	� � � (20)

�
�
����� �

�

�


�
� (21)

Let us now consider another measure. Define ��	��� �� �� �����

������ � ��� ���� ������, � �� ��� � �
� . Then, an-

other natural measure for convergence would be defined with either
������ or ��	���. As shown in Sec. 2, ����� and �	��� are equivalent
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criteria under Assumptions 1 and 2, thus ������ and ������ are also
equivalent. Adopting ������, we define ��-convergence as follows: the
number of iterations for ��-convergence is the number of iterations
that is needed to have ������� � ��. Referring to (11), we have

������� ��
��

�
�

��
���

����
���

�����
���
� � �����

� ��� (22)

For tractability and convenience, we consider the upper bound of
������� ��

��� instead of ������� in the optimization, leading to
the following formulation.
Problem 2: Given �� ��� ����� ��� � �,

��	
��

� 
��� (18)–(20) and

���	����� ��
��
���

����
���

�����
���
� � �����

� �� � ��� (23)

In [6], it has been reported that for 
 small the minimum number of
iterations in the MSE sense is obtained if and only if the absolute
value of each coefficient error becomes equal to ��� after the same
number of iterations. This implies under Assumptions 1 and 2 that,
as the constraint (19) is not considered in [6], Problems 1 and 2 are
essentially equivalent if we remove (19). Interestingly, however, an
imposition of (19) makes Problems 1 and 2 essentially different, as
clarified below. In what follows, we present a solution to each prob-
lem, and discuss which is more suitable for adaptive implementation.

3.3. Closed-Form Solution to Problem 1

Define 
	
� � �
�������������� ��� � �����
� �. Then, the following

proposition holds.

Proposition 1 Assume that � �����
� � � �, 
 � �	 �	 � � � 	 �	 
	
�.

Let ���	
� be the minimum � corresponding to Problem 1. Then,

���	
� �

�
�

�


�
�� ��� �	

� ��������
� �

�
�

��
���

�	
� �����

� �

�

��
	

(24)

which is achieved by (but not only by)

�
���
� �

�

�
�	
� �����

� �

�
	 
 � ��	 � � � 	 ��	 	� � � (25)

�
���
� �

�

�
�	
� ��������

� �

�
	 
 � �� � �	 � � � 	 ��	 	� � � (26)

� ��
�

�

�
�� ��� �	

� ��������
� �

�
�

��
���

�	
� �����

� �

�

�
� (27)

Proof: By (19), the condition (21) is reduced to

�
	
�
����� 


�



��	 	 (28)

where ����� �� ����� � � � ���� �������� � ��	 ���������, �� ���
�	

	 �

���
� 	

�
	 � � � 	 �	

	 �

���
� 	

�
	 �	

	 �

������
� 	

�

		
� �

��� . Moreover, (18)

and (19) imply���������� � ���	 (29)

where ����� �� ��	 � � � 	 �	 � � ��	 � �
��� . By (29), we have

���� � � 
 �
��
��	 ����� �� ��� � �, where ��� is a lower bound

of ���	
�; i.e., ���	
� 
 ����
.

Now, taking a careful look at Problem 1, we see that an arbi-
trary change of rows in ���� makes no impact on the conditions.
This suggests that there should be multiple solutions in general. We
thus introduce another condition: �

���
� � �

���
� � � � � � �

���
� ���

�����	 	
 � ��	 �	 � � � 	 ��. This condition allows us to express����� as ����� � ��
��	 , where �� �� �����	 � � � 	 ����	 ��������	 �

��	 �����. With the above arguments, Problem 1 is reduced to the
following problem:

��	
��

� 
��� ��	 ����� � � (30)

�� 
 � (31)

��� 
 �



��� (32)

The condition (30) implies that ���� � � 
 �
��
��	 ������� ����.

Let ��� �� �
���	

��. Then, the choice of ���	 �� � ����	 ����
� satisfies
(30), (31), and (32), meaning that the lower bound ����
 is achieved
by ���. This verifies that (24)–(26) is a solution to Problem 1. �

3.4. Closed-Form Solution to Problem 2

By (19), it follows that

���	����� �

��
���

����
���

�����
���
� � �����

� �� �

��
�����

����
���

����Æ� � ���
���
� ��	

where ���
���
� ��



�

���

��
����� � �����

� ��
����

. This implies that,

in finding a solution to Problem 2, we can replace �����
� , 
 � �� �

�	 � � � 	 ��, by ���
���
� . Based on this observation, we can prove the

following proposition (Proof is omitted due to lack of space).

Proposition 2 Assume that � �����
� � � �, 
 � �	 �	 � � � 	 �, and

� ���
���
� � � �, where � ��



���� �� ����


����� � �. Then,
the solution to Problem 2 is given by (24)–(27) with the replacement
of ���	
��

� by ���
���
� .

We should mention that, because we consider an upper bound
given in (11) [or (22)], it is guaranteed that the true error (or system
mismatch) reaches � (or ��) within ���	
� iterations given in Proposi-
tion 1 (or Proposition 2), provided that the assumption � � 
�

���
� �

�� holds.

3.5. Construction of�� in Proposed Algorithm

In the previous subsections, we show that the solutions to Problems
1 and 2 are different in general. Which formulation is more suitable
for the adaptive algorithm from the computational aspect?

In practice, the optimal filter�� is not available, thus we should
approximate ������ �� � ��� somehow. A possible candidate
would be the current estimate ��� �� � �����

� 	 �����
� 	 � � � 	 �����

� �	 ��

�� � ���� �	 ��� � ����. If we use Proposition 1, we need
all the components of ���, which requires �� multiplications (Note:
Although only ��� elements of ��� would be involved in the design
of ��, the other elements are also required to find 
	
�). On the
other hand, if we use Proposition 2, ���
���

� is approximated by

����
���

� ��

�
�����

� � ����������
�

� ��

����

	 (33)
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which can be computed efficiently as explained later; ������ stands
for a subvector consisting of the �st to �th elements. Therefore, we
exploit Proposition 2 in the proposed algorithm.

For convenience, we define �
�
�� ��

���
�
� �

���
�
� � � � � �

�����
�

�� ��

� ��
���
�
� ��

���
�
� � � � � ��

���
�

� ������	�


 �� � �
��� . Moreover, to en-

sure ���� � �, we use a practical approximation ��
� ��

���
� �

�
�

��

�
� 	

� ��
���
� �

�

�
, under �� � �����


 �, by following the way in [6]. In

the proposed algorithm, �� is constructed as below.
Requirements: � � �, Æ� � �, 	 �� �
� (� � ����

���
� ).
Construction of��:

��
�
���� ����

� 
�
 � ��� � �
�

�
�����
�

�

�

��
 � ���

� � ���
�
�����

��

� ���

� 
��
���
�

�� �� ��
� 	 	��
���
�

��� 
 � 	�� �� � � � � � 	 �


��
�
� ���
��	Æ�� � 
��

���
�
��� � � � � � 
��

���
�

��� � 
��
�����
�

��


�
���
�

��
��	��
�
� � � 
��

���
�

��
� 
 � 	�� �� � � � � � 	 �


�� ��
� ����
�����
�

	

��
���

�
���
�

�
���
�

���
���
�


��� 
 � 	�� � � � � �
�

Æ� ���
�����
�


���

We call the resulting algorithm 	-law KPNLMS (MKP-NLMS) al-
gorithm, named after the MPNLMS algorithm [6]. Note that, al-
though the optimal design given in Proposition 2 does not depend
on the time index � � �, the proposed design for the adaptive al-
gorithm does depend on � because �� is approximated by ��. A
convergence analysis for the algorithms having the form of (5) is pre-
sented in [8] in a unified manner by extending the framework called
adaptive projected subgradient method.

Computational complexity: The extra complexity for the proposed
design of�� compared with KPNLMS [1] is no more than � 	��
multiplications plus � square-root operation, � 	 � logarithmic op-
erations, and �
� 	 �� comparisons. Note that ��

�
���� is common

to KPNLMS and the proposed algorithm, and it can be computed in
a recursive manner. The computational complexity of KPNLMS per
iteration is 
�� 	 ��� 	 ��, of which � is for constructing ��.
With a typical choice � � � or � � �, the extra complexity is
7.2% – 10% of the complexity of KPNLMS (For colored inputs, it
is about 6.3% – 8.7%). The construction of the matrix �� involves

� � ���� 	 ��� multiplications, however, this computation is
required only once.

4. NUMERICAL EXAMPLES

To compare the performance of the proposed algorithm and KPNLMS
in the sense of ��-convergence, simulations are conducted with ��
generated randomly for � � ��. The input is white with the
signal to noise ratio (SNR) � �� dB, where SNR is defined as
SNR �� �� ����


�
�
�
���
	

�
�

��
	


dB (�� �� ��� �
�).4 The

system mismatch is calculated with an arithmetic average over ���
independent runs.

For both algorithms, the step size is set to �� � ���� to obtain
reasonably small estimation errors. For KPNLMS, the parameters
are set to the same values as in [1]. For the proposed algorithm,
the parameters are set to � � ����, Æ� � ����; 	 is determined
according to the value of �� which ranges between ���� and ����. ��

4Although SNR � �� dB would be impractically high, we intend to show
in this numerical example that the lower the required level of system mis-
match is, the higher the gain due to the proposed method is.
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Fig. 1. (a) The required level of system mismatch �� versus the num-
ber of iterations for ��-convergence under SNR � �� dB.

and �� are computed by the simple sample-averages with the initials��
 �� ������ and ��
 �� �. The value of � is selected with its
maximum ���� �� � in the way presented in [1]; an average value
of � in the simulation was ���.

Figure 1 plots ��, which is the required level of system mismatch,
against the number of iterations for ��-convergence. It is seen that
the proposed algorithm outperforms KPNLMS overall. In particular,
the difference is distinctive when a low level of system mismatch is
required.

5. CONCLUSION

This paper has presented an efficient adaptive algorithm based on (i)
sparsification of an unknown system by the orthogonal transforma-
tion with the Krylov subspace basis and (ii) proportionate adaptive
filtering that exploits the sparsity of the transformed unknown sys-
tem. An efficient design of the proportionality factors has been de-
rived based on a constrained optimization. The numerical examples
have demonstrated that the proposed algorithm significantly reduces
the number of iterations for �-convergence when a low level of sys-
tem mismatch is required.
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