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ABSTRACT

In this paper, we propose three new proportionate-type NLMS al-
gorithms: the water filling algorithm, the feasible water filling algo-
rithm, and the adaptive μ-law proportionate NLMS (MPNLMS) al-
gorithm. The water filling algorithm attempts to choose the optimal
gains at each time step. The optimal gains are found by minimizing
the mean square error (MSE) at each time with respect to the gains,
given the previous mean square weight deviations. While this algo-
rithm offers superior convergence times, it is not feasible. The sec-
ond algorithm is a feasible version of the water filling algorithm. The
adaptive MPNLMS (AMPNLMS) algorithm is a modification of the
MPNLMS algorithm. In the MPNLMS algorithm, the parameter μ
of the μ-law compression is constant. In the AMPNLMS algorithm
the parameter μ is allowed to vary with time. This modification al-
lows the algorithm more flexibility when attempting to minimize the
MSE. Compared with several feasible algorithms, the AMPNLMS
algorithm has the fastest MSE decay for almost all times.

Index Terms— Adaptive filters, least mean square methods,
convergence of numerical methods, sparse impulse response.

1. PTNLMS ALGORITHM FRAMEWORK

Beginning with the proportionate normalized least mean
square (PNLMS) algorithm [1], proportionate-type NLMS (PtNLMS)
algorithms have been widely used in adaptive filtering applications
when dealing with sparse impulse responses. A sparse impulse re-
sponse is one in which very few coefficients differ from zero.

In this section we lay out the framework of a canonical PtNLMS
algorithm. Our general goal is to estimate an unknown system im-
pulse response of length L given by w = [w1, w2, . . . , wL]. The
input signal to the unknown system at time k is x(k) = [x(k), x(k−
1), . . . , x(k−L+1)]T . The output of the system is y(k) = wT x(k).
The measured output of the system, d(k), contains noise v(k) and is
equal to the sum of y(k) and v(k). The algorithm is designed to es-
timate the system impulse response. We define the estimated system
impulse response as ŵ(k). The estimated system output is given by
ŷ(k) = ŵT (k)x(k). We measure the error, defined as e(k), of our
estimate by taking the difference between the measured output and
the estimated output.

The update equation for the canonical PtNLMS algorithm is
given in Table I. The δ term is introduced into the denominator to
avoid division by zero in situations where the inputs signal has no
energy. In Table II we specify the generation of the time varying
gain matrix. The user starts by choosing an appropriate function of

Table I
PtNLMS Algorithm

y(k) = wT x(k)
ŷ(k) = ŵT x(k)
d(k) = y(k) + v(k)
e(k) = d(k) − ŷ(k)

ŵ(k + 1) = ŵ(k) + βG(k+1)x(k)e(k)

xT (k)G(k+1)x(k)+δ

Table II
PtNLMS Gain Matrix Generation

Specify F [|ŵl(k)|]
γmin(k + 1) = ρmax{δp, F [|ŵ1(k)|] , . . . , F [|ŵl(k)|]}
γl(k + 1) = max{γmin(k + 1), F [|ŵl(k)|]}
gl(k + 1) = γl(k+1)

1
L

�L
i=1 γi(k+1)

G(k + 1) = diag{g1(k + 1), . . . , gL(k + 1)}

the estimated impulse response F [|ŵl(k)|], l = 1, 2, · · · , L. For in-
stance if we specify F [|ŵl(k)|] = 1 the algorithm becomes the well
known NLMS algorithm. Next a minimum gain γmin(k + 1) is cal-
culated. The minimum gain ensures that all coefficients are updated
at each iteration. The constant δp is important in the beginning of the
algorithm when all of the coefficients are zero and together with ρ
prevents the very small coefficients from stalling.

2. RECURSIVE WEIGHT DEVIATION EQUATIONS

The majority of the analysis that follows is based on the recursion
equations for the weight deviation and the square weight deviation.
In this section we present these recursion equations in vector and
component-wise form. The weight deviation at time k is defined as
z(k) = w − ŵ(k). The update equation for the weight deviation
vector is

z(k + 1) = z(k) − βG(k + 1)x(k)xT (k)z(k)

x(k)G(k + 1)x(k) + δ

− βG(k + 1)x(k)v(k)

xT (k)G(k + 1)x(k) + δ
. (1)

Employing the convention that xi(k) is the ith component of vector
x(k), we can express (1) and the square weight deviation [z2

i (k+1)]
in component-wise form as follows:
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zi(k + 1) = zi(k) − βgi(k + 1)xi(k)
�L

j=1 xj(k)zj(k)�L
j=1 x2

j (k)gj(k + 1) + δ

− βgi(k + 1)xi(k)v(k)�L
j=1 x2

j (k)gj(k + 1) + δ
(2)

z2
i (k + 1) = z2

i (k)

+
β2g2

i (k + 1)x2
i (k)

�L
j=1

�L
l=1 xj(k)xl(k)zj(k)zl(k)��L

j=1 x2
j (k)gj(k + 1) + δ

�2

+
β2g2

i (k + 1)x2
i (k)v2(k)

(
�L

j=1 x2
j (k)gj(k + 1) + δ)2

−2βgi(k + 1)xi(k)
�L

j=1 xj(k)zj(k)zi(k)�L
j=1 x2

j (k)gj(k + 1) + δ

−2βgi(k + 1)xi(k)v(k)zi(k)�L
j=1 x2

j (k)gj(k + 1) + δ

+
2β2g2

i (k + 1)x2
i (k)

�L
j=1 xj(k)zj(k)v(k)��L

j=1 x2
j (k)gj(k + 1) + δ

�2 . (3)

3. OPTIMAL PTNLMS ALGORITHM

We begin by making the following assumptions.

Assumption I: The input signal is a white Gaussian noise process
with zero-mean and variance σ2

x.

Assumption II: β is sufficiently small such that zi(k) fluctuates
much slower than x(k) and therefore they can be considered inde-
pendent.

Assumption III: The denominator terms are assumed to be constant.
(The validity of this assumption was discussed in [2].)

Assumption IV: The measurement noise v(k) is white with zero-
mean, variance σ2

v , and it is independent of the input.

Under these assumptions and assuming that gi(k +1) is a deter-
ministic function of time, we arrive at the following equations after
taking the expectation of the weight deviation and the square weight
deviation:

E{zi(k + 1)} ≡ zi(k + 1) = zi(k) − β0gi(k + 1)zi(k) (4)

E{z2
i (k + 1)} ≡ z2

i (k + 1) = z2
i (k) − 2β0gi(k + 1)z2

i (k)

+ β2
0g2

i (k + 1)

�
3z2

i (k) +
�
j �=i

z2
j (k)

�

+ β2
0
σ2

v

σ2
x

g2
i (k + 1). (5)

Here, we have defined β0 = βσ2
x/(Lσ2

x+δ). Wemake the following
definitions for notational convenience:

ci = −2β0z2
i (k)

qi = 2β2
0

�
�
	

3z2

i (k) +
�
j �=i

z2
j (k)

�
�+

σ2
v

σ2
x


� . (6)

At this point we try to find the optimal gain by minimizing, J(k +

1) = σ2
v + σ2

x

�L
i=1 z2

i (k + 1) for all k, with respect to the gain

Fig. 1. Water filling solution for λ.

and the constraint
�L

j=1 gi(k + 1) = L. Note that J(k) is the
approximate MSE at instant k [3]. We can recast this problem as an
optimization problem in the form

min
g

J(k + 1) = cT g +
1

2
gT Qg + σ2

v

gi ≥ 0 ∀ i

1T g = L (7)

where g = [g1(k + 1), g2(k + 1), . . . , gL(k + 1)]T and Q =
diag(q1, q2, . . . , qL).

Next, for convenience, we make the substitution gi(k +1) = s2
i

and incorporate the constraint into the minimization problem. This
results in

T (s, λ) =

L�
i=1

cis
2
i +

1

2

L�
i=1

qis
4
i + λ(

L�
i=1

s2
i − L). (8)

Taking the first derivative and setting it equal to zero yields two solu-
tions, sk = 0 and sk =

�
(−ck − λ)/qk. If we examine the second

derivative ∂2T
∂2sk

we find that the first solution results in a minimum if
λ ≥ −ck and the second solution results in a minimum if λ < −ck.
As it turns out, the solution to this problem is of the “water filling”
variety. We choose the constant λ according to the following rules.
First we sort the entries of−c in ascending order to form a new vec-
tor such that −c(1) < −c(2) < . . . < −c(L). We subsequently
rearrange the elements of Q to match the position of the original
indices in the sorted −c and to form a new matrix whose diagonal
elements are q(1), q(2) . . ., q(L).

Next we solve for

λi =
−�L

k=i

c(k)
q(k)

− L�L
k=i

1
q(k)

. (9)

We choose λ = λi if −c(i−1) < λi < −c(i), where −c(0) = −∞.
We depict this water-filling problem in Fig. 1. We have a pitcher
containing a volume L of water. After pouring the contents of the
pitcher in a vessel with the profile shown in Fig. 1, we want to know
the difference of the height the water reaches in the vessel and the
zero-reference level of the vessel. This difference gives us the value
of λ we are seeking. The stairway sloped bottom of the vessel is
defined by the treads of heights −c(k) and with widths, 1/q(k).
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4. FEASIBLE SUBOPTIMAL PTNLMS ALGORITHM

The algorithm proposed in the previous sections is not feasible. Spe-
cifically we need to know E{z2

i (k)} = E{[wi − ŵi(k)]2}, which
requires knowledge of the optimal impulse response. In order to
avoid this we rewrite the error in another form

e(k) =
L�

j=1

xj(k)zj(k) + v(k). (10)

Next we multiply both sides of the equation by xi(k) and take the
expectation [assuming xi(k) is a white signal]. This results in

E{xi(k)e(k)} = σ2
xE{zi(k)}. (11)

If we define pi(k) = xi(k)e(k), we can calculate pi(k) = E{pi(k)}
and then solve for z̄i(k). We update our estimate of pi(k) in the fol-
lowing fashion:

p̂i(k) = αp̂i(k − 1) + (1 − α)pi(k)

ẑi(k) =
p̂i(k)

σ2
x

(12)

where 0 ≤ α ≤ 1. Now, we approximate E{z2
i (k)} with �ẑi(k)

�2.
This approximation is expected to be good at the beginning when
zi(k) are large. The same approximation is used in [4], [5]. Better
estimates of E{z2

i (k)} are possible, but more complex to compute.

5. ADAPTIVE MPNLMS ALGORITHM

The AMPNLMS algorithm is a modification of the MPNLMS algo-
rithm [6], [7]. As in the previous section we try to reach the optimal
performance as quickly as possible at each time step. In order to
do so we introduce a time varying εc(k), such that F [|ŵl(k)|] =
ln [1 + μ(k)|ŵl(k)|] and εc(k) = 1/μ(k). We recall that εc is re-
lated to when a coefficient is considered to be converged [7]. The
strategy employed by the AMPNLMS is to start out with a large
value for εc(k) and slowly decrease the required ε-neighborhood to
be reached by the converged algorithm. In doing so, the AMPNLMS
algorithm initially behaves like the PNLMS algorithm and then tran-
sitions to performing like the NLMS algorithm as time proceeds.
This transition reflects our knowledge of the impulse response. Ini-
tially we know the impulse response is sparse and therefore we direct
our resources in a manner to most efficiently estimate the impulse re-
sponse. As time goes on, our a priori knowledge [which is ŵ(k)]
becomes close to the true value of the impulse response and the co-
efficient estimate errors are uniformly distributed along all coeffi-
cients, in contrast to the initial situation.

We determine the value we choose for εc(k) by relating it to the
current MSE e2(k). We can form an estimate of e2(k) and update
μ(k) by calculating:

ζ(k + 1) = ξζ(k) + (1 − ξ)e2(k)

ε̃L(k + 1) =
ζ(k + 1)

ν

εc(k + 1) =

�
ε̃L(k + 1)

Lσ2
x

μ(k + 1) =
1

εc(k + 1)
(13)

where 0 ≤ ξ ≤ 1 and ν is a constant relating the current MSE
estimate (obtained by time averaging) to ε̃L(k +1). The term ζ(k +
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Fig. 2. Water filling α comparison.

1) is an estimate of e2(k + 1). ε̃L(k + 1) is the distance to the
steady-state MSE (“noise floor”) that is considered as achievement
of convergence when reached by the MSE.

In essence, the algorithm continuously tightens the level above
the noise floor that the algorithm’s MSE is required to achieve. Pro-
ceeding in this fashion causes the algorithm to behave like the
PNLMS algorithm initially when changing large coefficients results
in large changes in the MSE. As time proceeds and the MSE bound
tightens, coefficients with smaller amplitudes are adjusted until the
algorithm finally performs like the NLMS (through the μ-compres-
sion law). Adaptation of μ(k) is done by using the estimate of MSE,
ζ(k). In this way, the changes of μ(k) are related in a natural way
to the changes of MSE, i.e., when the MSE becomes smaller, the
algorithm inclines to treat all coefficients more equally.

6. RESULTS

The parameters used to generate the curves that follow are: L =
512, β = 0.1, ρ = 0.01, δ = 5.12, σ2

x = 1, and σ2
v = 10−6. The

impulse response used in simulations corresponds to a real-world
network echo path similar to the one given in [6], [7]. In Fig. 2
we plot the MSE estimate obtained by Monte Carlo simulations for
the non-feasible water filling algorithm and the feasible water filling
algorithm with values of α = 0.9, 0.99, and 0.999. As expected,
the non-feasible water filling algorithm performs best. The feasible
water filling algorithm converges fastest for α = 0.99.

We compare the estimatedMSE performance of the AMPNLMS
using different values of ν in Fig. 3. Specifically, we have chosen
ν = 1, 10, 100, and 1000. The value of ξ = 0.99 is fixed in these
simulations. Out of four considered values for ν, the value ν=1000
provides the algorithm with the best performance.

Next in Fig. 4, we compare the estimated MSE performance
of the AMPNLMS algorithm for a fixed value of ν = 1000, and
varying ξ = 0.5, 0.9, 0.99, and 0.999. Varying the value of ξ does not
have as great an effect on the MSE performance as the ν parameter
does.

In Fig. 5 we compare the NLMS, PNLMS,MPNLMS, ε-PNLMS
[8], AMPNLMS, feasible water filling, and water filling algorithms.
The additional parameters used to generate these curves are as fol-
lows: α = 0.99, ξ = 0.99, and ν = 1000. Naturally, the non-
feasible water-filling algorithm performs better than all of the other
algorithms. The AMPNLMS algorithm has the second best perfor-
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mance, however; the feasible water-filling algorithm outperforms the
AMPNLMS in the initial convergence stage. The AMPNLMS and
feasible water-filling algorithms are sensitive to the choice of ξ and
α parameters.

Note the appearance of a significant excess MSE in the case of
the feasible water filing algorithm. This originates from (a) the in-
adequacy of (12) for approximating E{z2

i (k)} when the deviations
are small, and (b) fluctuation of estimates.

The feasible water filling algorithm has a very high computa-
tional complexity per input sampling period. The increased compu-
tational complexity is due to the sort operation as well as the need
to compute the c and Q elements. In contrast, the AMPNLMS re-
quires five multiplications, one addition, and a square root operation
(which maybe approximated) beyond the MPNLMS algorithm [7].

7. CONCLUSIONS

We have proposed two new feasible PtNLMS algorithms. The fea-
sible water filling algorithm was motivated by trying to find the op-
timal gain at each step. This approach resulted initially in the non-
feasible water filling algorithm. We subsequently modified the non-
feasible version into a suboptimal feasible version.

Next we introduced the AMPNLMS algorithm. This algorithm
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Fig. 5. Algorithm comparison.

was based on allowing μ-law coefficient compression to be time-
varying. In doing so, the ε-neighboorhood, which the algorithm is
required to converge to, is slowly tightened as time goes by. The
tightening is controlled by the evolving MSE. This modification re-
sults in superior MSE convergence.

8. REFERENCES

[1] D. Duttweiler, “Proportionate normalized least-mean-squares
adaptation in echo cancellers,” IEEE Trans. Speech Audio Pro-
cessing, vol. 8, pp. 508-518, Sept. 2000.
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