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ABSTRACT 
 
This paper derives a new adaptation algorithm named 
recursive least moduli (RLM) algorithm that combines least 
mean modulus (LMM) algorithm for complex-domain 
adaptive filters with recursive estimation of the inverse 
covariance matrix of the filter reference input.  The RLM 
algorithm achieves significant improvement in the filter 
convergence speed of the LMM algorithm with a strongly 
correlated filter reference input, while it preserves 
robustness of the LMM algorithm against impulsive 
observation noise.  Analysis of the RLM algorithm is 
developed for calculating transient and steady-state 
behavior of the filter convergence.  Through experiment 
with simulations and theoretical calculations of the filter 
convergence for the RLM algorithm, we demonstrate its 
effectiveness in making adaptive filters fast convergent and 
robust in the presence of impulse noise.  Good agreement 
between the simulations and theory proves the validity of 
the analysis. 
 
Index Terms – RLS algorithm, covariance, impulse noise 
 

1.  INTRODUCTION 
 
Adaptive filtering technology has been and still is playing 
an essential role in implementing latest communication 
systems, e.g., mobile communication systems, digital 
broadcasting systems, internet access systems, etc. 

Among many adaptation algorithms for adaptive filters, 
the least mean square (LMS) algorithm is most popular and 
widely applied to practical systems in industry as well as in 
science [1], [2].  Although the LMS algorithm attracts many 
implementers because of its superior performance and well-
established design practices, one of its weaknesses is known 
to be vulnerability to disturbances, e.g. impulsive 
observation noise [3].  For complex-domain adaptive filters, 
least mean modulus (LMM) algorithm is one of the 
solutions to this problem [4].  However, the LMM algorithm 
has a serious disadvantage of slower convergence speed. 

It is well known that for any adaptation algorithm a 
strongly correlated filter input makes the filter converge 
significantly slower because of the wide spread of 
eigenvalues of input covariance matrix.  One of the methods 
to “de-correlate” the filter input is recursive estimation of 
the inverse covariance matrix.  The recursive least squares 

(RLS) algorithm effectively accelerates the convergence of 
LMS adaptive filters, e.g. [2, Chap.8].  However, the RLS 
algorithm is again vulnerable to impulse noise. 

The above observations inspire us to combine the LMM 
algorithm with the recursive estimation of the inverse 
covariance matrix, yielding a new algorithm, named 
recursive least moduli (RLM) algorithm, that could realize 
much faster convergent adaptive filters while it preserves 
the robustness of the LMM algorithm against impulse noise. 
 

2.  ADAPTIVE FILTER PERFORMANCE 
IN THE PRESENCE OF IMPULSE NOISE 

 
In this section, we first present an impulse noise model and 
then evaluate adaptive filter performance for the LMS, 
LMM and RLS algorithms in the presence of impulse noise. 
 
2.1.  Impulse Noise Model 
Additive impulsive observation noise is often modeled as 
contaminated Gaussian noise (CGN) that is mathematically 
a combination of two independent Gaussian noise sources 
[5], i.e., 
     0(n): Gaussian noise source #0 with variance 2

0 
and probability of occurrence p 0, and 

     1(n): Gaussian noise source #1 with variance 2
1 

 and probability of occurrence p 1. 
Note that p 0 + p 1 = 1. Variance of CGN is given by 2  = 
p 0 

2
0 + p 1 

2
1.  Usually, 2

1 >> 2
0 and p 1 < p 0.    For 

“pure” Gaussian noise, p 1= 0 and 2  = 2
0. 

2.2.  LMS and LMM Algorithms 
A cost function L(n) = | e(n) | 2 / 2 gives the well-known 
(complex-domain) LMS algorithm whose tap weight update 
equation for an FIR-type adaptive filter can be written as 

c(n+1) = c(n) + c e*(n) a(n), 
whereas for a cost function L(n) = | e(n) | (modulus of the 
error), we derive least mean modulus (LMM) algorithm [4] 
with tap weight update equation 

c(n+1) = c(n) + c [e*(n) / | e(n) |] a(n), 
where n is time instant, c(n) is tap weight vector (N taps), 
a(n) = [a(n), ···, a(n N+1)]T is filter reference input vector 
(length N), c is step size and ( · )* denotes complex 
conjugate.    The error signal is given by e(n) = (n) + (n), 
where (n) = H(n) a(n) is excess error, (n) = h – c(n) is 
tap weight misalignment vector, h is impulse response 
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vector of the unknown stationary system (length N) and (n) 
is additive observation noise, CGN in general. 
    As is well known, for a same level of steady-state excess 
error, the LMS algorithm normally converges faster than the 
LMM algorithm if the additive noise is “pure” Gaussian 
noise.  In the presence of impulse noise (CGN), the steady-
state excess error for the LMM algorithm remains much 
smaller than that for the LMS algorithm, showing the high 
robustness of the LMM algorithm [4].  Indeed, with the 
LMS algorithm the impulse noise is not suppressed at all. 
2.3.  RLS Algorithm 
As stated earlier, the RLS algorithm achieves significant 
improvement in the convergence speed of the LMS 
algorithm with a highly correlated filter reference input.  
We run simulations of the RLS algorithm for the example 
below. 
    Example #1   N = 32 
                         filter ref. input: AR(1) Gaussian process 
                                                 with variance 2a =1 and  
                                                 regression coefficient  = 0.9 
                         step size: c = 1 
                         forgetting factor:  = 1 – 2 –10 
                         Case 1: “pure” Gaussian noise  2  = 0.01 
                         Case 2: CGN   2

0 = 0.01; p 0 = 0.9 
                                              2

1 = 10   ; p 1 = 0.1 
    Results of the simulations for Example #1 are shown in 
Fig. 1, where we observe significantly faster convergence 
than that for the LMS algorithm (step size 2 –11).  However, 
in Case 2, the steady-state excess error considerably 
increases (by 20 dB) as is the case with the LMS algorithm. 
    If the recursive estimation of the inverse covariance 
matrix of the filter reference input as used in the RLS 
algorithm is to be combined with the LMM algorithm, we 
expect that improvement in the convergence speed could be 
achieved for strongly correlated filter inputs, while 
preserving the robustness against the impulsive observation 
noise. 
 

3.  RECURSIVE LEAST MODULI ALGORITHM 
 
Let the cost function of the error be defined as 

LF(n) =  i=1 n  n – i F[| e(i) |], 
where  is forgetting factor and the function F( · ) is 
monotonically increasing, non-negative, continuous 
everywhere and differentiable except at a limited number of 
points.  Then we can derive a generalized recursive type 
algorithm.  For the RLS algorithm, we have F(| e |) = | e | 2/2. 
    If F(| e |) = | e |, we derive a new adaptation algorithm 
that is clearly different from the RLS algorithm but is the 
LMM algorithm combined with the recursive estimation of 
the inverse covariance matrix.  We can derive the tap weight 
update equation given by 
              c(n+1) = c(n) + c [e*(n) / | e(n) |] P(n) a(n),   (1) 
where we have two kinds of method for updating P(n) 
which is an estimate of the inverse covariance matrix. 

 

       
Fig. 1  Adaptive filter convergence. 

                     (Example #1; RLS, N = 32,  = 0.9 
Case 1: “pure” GN, Case 2: CGN) 

 
      Method A  (Indirect Method) 

                               P(n+1) = Q–1(n+1)                    (2a) 
with             Q(n+1) =  Q(n) + a(n) aH(n) / | e(n) |     (2b) 
      Method B  (Direct Method) 

P(n+1) = –1{ P(n) – P(n) a(n) aH(n) P(n) 
                                     / [  | e(n) | + aH(n) P(n) a(n)] }  (3) 
Note that (2b) or (3) contains the error modulus | e(n) | 
which does not appear in the RLS algorithm. 
    As the name of the RLS algorithm comes from the 
“squares” of the error, we name the above algorithm 
recursive least moduli (RLM) algorithm.  Though the RLS 
algorithm has been intensively studied, the proposed RLM 
algorithm is first dealt with in this paper. 
 

4.  ANALYSIS OF RLM ALGORITHM 
 
In this section, we develop performance analysis of adaptive 
filter convergence for the RLM algorithm.  Due to space 
limitation, detailed derivation process cannot be fully 
described, but only main results will be summarized.  
However, the validity of the analytical results in this section 
will be verified through experiment in Section 5. 
 
4.1.  Assumptions 
For the analysis to be developed in this section, we make 
the following assumptions. 
    A1: The filter reference input a(n) = aR(n) + j aI(n) is a 
stationary correlated (or colored) Gaussian process. aR(n) 
and aI(n) are independent and identical processes with zero 
mean, covariance matrix Ra and variance 2a. 
    A2: The additive observation noise (CGN in general) is 
stationary and independent of a(n). 
    A3: The filter reference input a(n) and the tap weights 
c(n) are mutually independent (Independence Assumption). 
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    A4: The estimate Q(n), or P(n), and the filter reference 
input a(n) are mutually independent. 
    A5: The error e(n) and the filter reference input a(n) are 
jointly Gaussian distributed [6]. 
    Assumption A4 is another independence assumption that 
facilitates analysis of recursive type algorithms. 
4.2.  Difference Equations for Tap Weights 
Under the assumptions above, a set of difference equations 
for the mean vector m(n) = E[ (n)] and the second-order 
moment matrix K(n) = E[ (n) H(n)] of the tap weight 
misalignment vector (n) can be derived from (1) as follows. 

m(n+1) = m(n) – c p(n) 
K(n+1) = K(n) – c [V(n) + VH(n)] + 2c T(n), 

where p(n) = E[P(n)]W(n)m(n), K(n) = E[P(n)]W(n)K(n), 
T(n) = 2E[P(n)] Ra E[P(n)], W(n) = (  /2)1/2  –1eCGN(n) Ra, 

eCGN (n) = 1 /  i=0 1 p i  / ei(n) and 2ei(n) = (n) + 2
i (i = 

0, 1).  Here, we define excess mean square error (EMSE) as 
a measure to evaluate adaptive filter performance. 

(n) = E[| (n) | 2] / 2 = tr[Ra K(n)], 
where tr( · ) is trace of a matrix. 
4.3.  Calculation of Estimate E[P(n+1)] – Method A  
In this subsection, we assume the absence of impulse noise 
for simplicity.  From (2b) we derive 

E[Q(n+1)] =  E[Q(n)] + Te(n),    (4) 
where, using Gaussian conditional probability of e(n) given 
a(n) and the method used in [7], we calculate 

Te(n) = 2(2/ ) 1/2  –1ec(n)  0  / 2 DM( , n) |AM( , n)| –1 d  
with 

DM( , n) = AM
–1( , n)Ra, 

AM( , n) = I + Ma(n) sin2( ) / 2ec(n), 
Ma(n) = Ra m(n)mH(n) and 2ec(n) = (n) + 2  – tr[Ma(n)]. 
With E[Q(n+1)], we approximately calculate in (2a) 

  E[P(n+1)] = E[Q–1(n+1)]  E[Q(n+1)] –1.     (5) 
This E[Q(n+1)]–1 is known to be less accurate, though 
Method A  is used in some papers, e.g. [8]. 
4.4.  Calculation of Estimate E[P(n+1)] – Method B  
We again assume the absence of impulse noise. Under 
Assumption A4, we find from (3) the following difference 
equation. 

E[P(n+1)] = –1E[P(n)]{I – (n)E[P(n)]},    (6) 
where 

(n)   0  2DMP( , n) |AMP( , n)| –1 d  
·  0  exp[–   ec(n) r] exp(–r2/2) r 

         · I0{[( /2)1/2MDMP
1/2( , n)/ ec(n)]r}dr    (7) 

with 
DMP( , n) = AMP

–1( , n)Ra, 
AMP( , n) = I + Ma(n) / 2ec(n) + 2  Ra E[P(n)] 

and MDMP( , n) = tr[DMP( , n)m(n)mH(n)].  Here, I0(·) is the 
zero-th order Modified Bessel Function of the first kind [9]. 
4.5.  Analysis for a Large Number of Tap Weights 
For N >> 1, we can approximately calculate the expectation 
for e(n) and a(n) separately. 
     For Method A , we easily calculate 

Te(n)  2 (  /2) 1/2  –1eCGN(n) Ra.    (8) 

4.6. Initial Conditions 
Usually, initial tap weights are selected c(0) = 0. Then, m(0) 
= h, K(0) = h hH and (0) = hH Ra h. We choose initial 
value of the estimate P(0) = P0 I, where P0 is determined so 
that (1) be minimized. We find 

P0 = (1/2)(  / 2) 1/2  –1eCGN (0) hH Ra2 h / [ c tr(Ra2)]. 
4.7.  Steady-State Solution 
Assuming that the impulse noise is absent and the filter 
converges as n  , we solve steady-state EMSE ( ). 
    For Method A ,  

( ) =  2  / (1– ) 
with 

 = c c  –1N, 
where c = 1 –  may be called complementary forgetting 
factor. 
    For Method B , 

 = c c P  –1N, 
where we find that P > 1 holds. 
 

5.  EXPERIMENT 
 
In this section, experiment is carried out with simulations 
and theoretical calculations of transient and steady-state 
behavior of adaptive filter convergence for the RLM 
algorithm.  The effectiveness of the RLM algorithm as well 
as the validity of the analysis in Section 4 will be 
demonstrated. 
    The following two examples are prepared. 
    Example #2   N = 4 
                         filter ref. input: AR(1) Gaussian process 
                                                 with variance 2a =1 and  
                                                 regression coefficient  = 0.5 
                         step size:  c = 1 
                         complementary forgetting factor: c = 2 –7 
                         Case 1: “pure” Gaussian noise  2  = 0.01 
    Example #3   N = 32 
                         filter ref. input: same as Example #1 
                         step size: c = 1 
                         complementary forgetting factor: c = 2 –10 
                         Case 1 & Case 2: same as Example #1 
    Fig. 2 shows results for Example #2 (no impulse noise) 
where the number of tap weights N is small.  Theoretical 
convergence is calculated using (6) and (7) (Method B ).  
In the figure, theoretical convergence for the LMM 
algorithm (step size c = 2 –11, ( ) = –38.0 dB) is also 
plotted for comparison.  We observe significantly faster 
convergence for the RLM algorithm. 
    In Fig. 3, we depict EMSE convergence for Cases 1 and 2 
of Example #3 (N is large), together with the simulated 
convergence for the LMM algorithm (step size c = 2 –14, 
( ) = –38.0 dB) and for the RLS algorithm (see Case 1 of 

Example #1) where the theoretical convergence is calculated 
using (4), (5) and (8) (Method A ).  The steady-state EMSE 
for Case 1 is –39.6 dB in theory, whereas that for Case 2 is 
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Fig. 2  Adaptive filter convergence. 

(Example #2; RLM, N = 4,  = 0.5 
Case 1: “pure” GN) 

 

       
                Fig. 3  Adaptive filter convergence. 
                                 (Example #3; RLM, N = 32,  = 0.9 

Case 1: “pure” GN, Case 2: CGN) 
 
–38.7 dB, the increase in ( ) due to the CGN being within 
1 dB.  We observe that the filter converges significantly 
faster than the LMM algorithm, even as fast as the RLS 
algorithm, while preserving the robustness of the LMM 
algorithm against impulsive observation noise, that 
demonstrates the effectiveness of the RLM algorithm. 
    In Figs. 2 and 3, we see good agreement between the 
simulated and theoretically calculated convergence of the 
EMSE that proves the validity of the analysis developed in 
Section 4 for practical use. 
 
 
 

6.  CONCLUSION 
 
In this paper, we have derived a new adaptation algorithm 
named recursive least moduli (RLM) algorithm for use in 
complex-domain adaptive filters.  The algorithm recursively 
estimates the inverse covariance matrix of the filter 
reference input, and significantly improves the convergence 
speed of the least mean modulus (LMM) algorithm.  Unlike 
the RLS algorithm, the RLM algorithm makes the filter 
highly robust in the presence of impulsive observation noise 
by introducing “division by error modulus” in the update 
equations for tap weights and estimate of covariance matrix. 
    Detailed analysis of the RLM algorithm has been 
developed to derive a set of difference equations to calculate 
transient and steady-state convergence behavior in terms of 
excess mean square error (EMSE).  Through experiment, 
we have demonstrated the effectiveness of the RLM 
algorithm in realizing fast convergent and robust adaptive 
filters. Good agreement between simulations and theory has 
proven the validity of the analysis. 
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