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ABSTRACT

Step size and tap length play critical roles in balancing the complex-
ity and steady-state performance of an adaptive filter. For an impulse
response with an exponential power decay profile, which models a
wide range of practical systems, such as an acoustic echo path, this
paper proposes a new variable step-size and tap-length least mean
square (LMS) algorithm. In each iteration, the optimal step-size
and tap-length are derived by minimizing the mean square deviation
(MSD) between the true and the estimated filter coefficients. The
proposed algorithm performs better in terms of both convergence
rate and steady-state performance than the existing ones. Effective-
ness of the proposed algorithm is demonstrated through computer
simulations.

Index Terms— Exponential power decay profile, least mean
square (LMS), variable step size, variable tap length, adaptive fil-
ters, acoustic echo cancellation.

1. INTRODUCTION

Adaptive filters have been successfully applied to diverse fields in-
cluding digital communication, speech recognition, control systems,
radar systems, seismology, and biomedical engineering. Among var-
ious types of adaptive algorithms, the least mean square (LMS) al-
gorithm is well known and widely utilized for its simplicity and
robustness [1]. The performance of the LMS algorithm, in terms
of convergence rate, misadjustment, mean square error (MSE), and
computational cost, is believed to be governed by both the tap length
and step size of the adaptive filter [2–4].

Usually, to describe an unknown linear time-invariant system
accurately, a sufficiently large filter tap length is needed, since the
MSE is likely to increase if the tap length is undermodeled [4, 5].
However, the computational cost is proportional to the tap length.
Moreover, an increase in filter length can slow down the convergence
rate dramatically due to the step-size restrictions [5,6]. Thus, a vari-
able tap-length algorithm, which finds the appropriate tap-length for
each iteration, is necessary to achieve both small MSE and fast con-
vergence. Existing variable tap-length algorithms such as [7, 8] are
sensitive to the parameter selection, i.e., different parameters result
in different performance, according to the discussion in [8].

Recently, the impulse response envelope is suggested to be one
essential factor that determines the convergence rate of a deficient-
length filter [5,9]. In many applications such as acoustic echo cancel-
lation, the unknown impulse response follows an exponential decay
envelope. For this kind of systems, a theoretically optimal variable
tap-length sequence is introduced in [5]. However, this algorithm
entails large computational complexity as a result of trying to solve
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Lambert’s W-function. To reduce the complexity, an adaptive solu-
tion for the optimal tap length is proposed in [9], which ensures a
well-behaved transient tap-length convergence. However, to the best
of our knowledge, variable tap-length algorithms have not been pro-
posed in conjunction with a variable step size. It is well known that
with the stability conditions, the efficient step-size control trade-offs
fast convergence rate and tracking ability with filter misadjustment.
Thus, we are motivated to develop a low complexity algorithm with
both a variable tap length and step size.

In this paper, we propose a new variable tap-length and vari-
able step-size LMS algorithm for applications where the unknown
channel impulse response has an exponential decay envelope. The
optimal solution of both tap-length and step-size at each iteration is
obtained by minimizing the mean square deviation (MSD). As will
be shown in the simulations, the proposed method outperforms those
existing algorithms in terms of both convergence rate and misadjust-
ment.

2. VARIABLE TAP-LENGTH AND VARIABLE STEP-SIZE
LMS ALGORITHM

Consider an unknown length N exponential decay impulse response
cN = [c0, c1, ..., cN−1]

T
modeled by

ci = e−(i−1)τr(i), i = 0, 2, ..., N − 1, (1)

where the decay rate τ is a known positive constant and r(i) is a
zero-mean i.i.d. Gaussian random process with variance σ2

r . The
observed signal is a linear convolution of the transmitted signal and
the impulse response:

d(n) = xT
N (n)cN + v(n), (2)

where cN = [c0, c2, ..., cN−1]
T

is the channel response and xN (n) =

[x(n), x(n − 1), ..., x(n − N + 1)]T is the input vector and v(n) is
the additive noise. Here the problem we are considering is to esti-
mate {ci} given d(n) and x(n) using an LMS algorithm with vari-
able tap length and step size.

In the variable tap-length and variable step-size LMS algorithm,
both the tap-length and step-size are time-varying rather than fixed.
We denote by M(n) and μ(n), respectively, the integer tap-length
and step-size for the coefficients updated at the nth iteration, and as-
sume that M(n) ≤ N . With the LMS criterion, the filter coefficients
are updated by [5]

wM(n+1) =

[
wM(n)(n)

0M(n+1)−M(n)

]
+μ(n+1)e(n)xM(n+1)(n+1),

(3)
where e(n) is the estimated error defined as

e(n) = d(n) − xT
M(n)(n)wM(n), (4)
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xM(n)(n) = [x(n), x(n − 1)..., x(n − M(n) + 1)]T and wM(n) =[
w1(n), w2(n)..., wM(n)(n)

]T
are the M(n)-tap adaptive filter in-

put vector and the coefficients vector, respectively, and 0 denotes a
vector with all-zero entries. In the following, we introduce how to
update the tap-length M(n) and step-size μ(n) at each iteration.

Similar to [5, 9], we partition the impulse response cN into two
parts as

cN �
[

c′
M(n)

c′′
N−M(n)

]
, (5)

where c′
M(n) can be viewed as the part modeled by wM(n), and

c′′
N−M(n) is the undermodeled part. Define the estimation errors of

partial and total coefficients, respectively, as

δM(n)(n) = wM(n) − c′
M(n), (6)

and

δN (n) =

[
wM(n)

0N−M(n)

]
− cN . (7)

Combining (2) and (6), we rewrite the signal estimate error in (4) as

e(n) = −xT
N (n)δN (n) + v(n). (8)

Substituting (8) into (3), we obtain

δN (n + 1) = A(n)δN (n) + μ(n + 1)v(n)

[
xM(n+1)(n + 1)

0N−M(n+1)

]
,

(9)

where

A(n) = IN − μ(n + 1)

[
xM(n+1)(n + 1)

0N−M(n+1)

]
xT

N (n), (10)

and IN is the N × N identity matrix.
To quantitatively evaluate the misadjustment of the filter coeffi-

cients, MSD is taken as a figure of merit, which is defined as

Λ(n) � Λ(M(n), μ(n)) = E
[‖δN (n)‖2

2

]
, (11)

where ‖ · ‖2 denotes the l2 norm. Note that at each iteration, MSD
depends on both M(n) and μ(n). Assume that both the signals x(n)
and v(n) are i.i.d. zero-mean Gaussian with variances σ2

x and σ2
v ,

respectively. According to the analysis in [5, 9], we find that

Λ(n + 1) =β(n + 1)Λ(n) + (η(n + 1) − β(n + 1))

E
[‖c′′

N−M(n+1)‖2
2

]
+ γ(n + 1), (12)

where

β(n + 1) = 1 − 2μ(n + 1)σ2
x + (M(n + 1) + 2)μ2(n + 1)σ4

x,
(13)

η(n + 1) = 1 + M(n + 1)μ2(n + 1)σ4
x, (14)

γ(n + 1) = M(n + 1)μ2(n + 1)σ2
xσ2

v. (15)

We propose to find the optimal tap length and step size by min-
imizing MSD at each iteration. Taking the first-order partial deriva-
tive of Λ(n+1) with respect to M(n+1) and μ(n+1), respectively,
we obtain

∂Λ(n + 1)

∂M(n + 1)
=μ2(n + 1)σ4

xΛ(n) + μ2(n + 1)σ2
xσ2

v + 2μ(n + 1)

σ2
x

(
1 − μ(n + 1)σ2

x

) dE
[‖c′′

N−M(n+1)‖2
2

]
dM(n + 1)

,

(16)

∂Λ(n + 1)

∂μ(n + 1)
=2σ2

x

(
(M(n + 1) + 2)μ(n + 1)σ2

x − 1
)
Λ(n)

+ 2σ2
x(1 − 2μ(n + 1)σ2

x)E
[‖c′′

N−M(n+1)‖2
2

]
+ 2μ(n + 1)σ2

xσ2
vM(n + 1). (17)

Based on the impulse pulse model in (1), we obtain

E
[‖c′′

N−M(n+1)‖2
2

]
=

e−2M(n+1)τ − e−2Nτ

1 − e−2Nτ
E

[‖cN‖2
2

]
, (18)

E
[‖cN‖2

2

]
=

1 − e−2Nτ

1 − e−2τ
σ2

r . (19)

Substituting (18) and (19) into (16) and setting the first-order partial
derivatives ∂Λ(n + 1)/∂M(n + 1) and ∂Λ(n + 1)/∂μ(n + 1) to
zero, we obtain

M(n + 1) = − 1

2τ
ln

μ(n + 1)
(
σ2

xΛ(n) + σ2
v

) (
1 − e−2τ

)
4τ (1 − μ(n + 1)σ2

x) σ2
r

,

(20)

μ(n + 1) =
1 − E

[
‖c′′

N−M(n+1)‖2
2

]
Λ(n)

(M(n + 1) + 2)σ2
x +

M(n+1)σ2
v

Λ(n)
− 2σ2

xE
[
‖c′′

N−M(n+1)‖2
2

]
Λ(n)

.

(21)

Then, at each iteration, a pair of stationary points M(n + 1) and
u(n + 1) can be obtained by jointly solving Eqs. (20) and (21).
Based on Eqs. (20) and (21), it is difficult to find closed-form solu-
tions for M(n + 1) and μ(n + 1). Moreover, the stationary points
from (20) and (21) lead to the global minimum of Λ(n + 1) only
if the MSD is a convex function with respect to the tap-length and
step-size. However, the convexity is difficult to be verified due to the
complicated Hessian matrix. In the following, we find an approxi-
mate solution of M(n) and μ(n) rather than explicitly solving (20)
and (21).

By assuming that M(n) is close to M(n+1), we replace M(n+
1) by M(n) in (21)

μ(n + 1) =
1 − E

[
‖c′′

N−M(n)‖2
2

]
Λ(n)

(M(n) + 2)σ2
x +

M(n)σ2
v

Λ(n)
− 2σ2

xE
[
‖c′′

N−M(n)‖2
2

]
Λ(n)

.

(22)

Thus, in each iteration μ(n + 1) and M(n + 1) are obtained in an
alternating manner by using (22) and (20). Next, we show that in this
alternating manner, convergence condition is satisfied. Moreover, by
removing the dependence in Eqs. (21) and (20) between each other,
μ(n+1) in (22) and M(n+1) in (20) are optimal solutions in terms
of minimizing Λ(n + 1) given the other.

Combining (5), (7), and (11), we obtain

Λ(n) = E
[‖δM(n)(n)‖2

2

]
+ E

[‖c′′
N−M(n+1)‖2

2

]
. (23)

Substituting (23) into (21), it is then straightforward to verify that
u(n+1) ensures the convergence of (12) according to the condition
in [5]

0 < μ(n + 1) <
2

(M(n + 1) + 2)σ2
x

. (24)

Moreover, if there is no background noise
(
σ2

v = 0
)

and the filter

tap length is perfectly modeled
(‖c′′

N−M(n+1)‖2
2 = 0

)
, the step size
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in (21) simplifies to

μ(n + 1) =
1

(M(n + 1) + 2)σ2
x

, (25)

which is consistent with the step-size that achieves the optimum con-
vergence rate and adjustment in [10].

To analyze the behavior of μ(n+1) in (22), we take the second-
order partial derivative of (12) with respect to μ(n + 1):

∂2Λ(n + 1)

∂μ2(n + 1)
=2M(n + 1)σ2

x

(
σ2

xΛ(n) + σ2
v

)

+ 4σ4
x

(
Λ(n) − E

[‖c′′
N−M(n+1)‖2

2

])
. (26)

Based on (23), we know that

∂2Λ(n + 1)

∂μ2(n + 1)
> 0, (27)

which indicates that for any given tap length, MSD is a convex func-
tion in the step size parameter. Therefore, with tap-length M(n),
the step-size in (22) minimizes the MSD at the (n + 1)st iteration.
Similarly, the second-order partial derivative of (12) with respect to
M(n + 1) leads to

∂2Λ(n + 1)

∂M2(n + 1)
=

8μ(n)τ2σ2
x(1 − μ(n)σ2

x)e−2M(n+1)τσ2
r

1 − e−2τ
. (28)

For any step size that guarantees convergence (see (24)), it is straight-
forward to show

∂2Λ(n + 1)

∂M2(n + 1)
> 0, (29)

which indicates that with a given step size, MSD is also a convex
function in the tap length parameter. Therefore, with the step size
μ(n+1), the tap length in (20) achieves the minimum MSD. So far,
an optimal solution for the step size and tap length at each iteration
is described by (22) and (20). However, the estimates of μ(n) and
M(n) still depend on Λ(n). Next, we show how to estimate Λ(n)
in the (n + 1)st iteration.

Based on the independence assumption between the filter input
signal and the filter coefficients, the MSE of the LMS filter is ex-
pressed as (see also [1, 9])

E
[
e2(n)

]
= σ2

xΛ(n) + σ2
v. (30)

Combining (30), (22), and (20), the tap length and step size are ob-
tained as follows:

μ(n + 1) =
E

[
e2(n)

] − σ2
v − σ2

xE
[‖c′′

N−M(n)‖2
2

]
σ2

x

(
M(n)E [e2(n)] − 2σ2

xE
[
‖c′′

N−M(n)‖2
2

]) ,

(31)

M(n + 1) = − 1

2τ
ln

μ(n + 1)
(
1 − e−2τ

)
E

[
e2(n)

]
4τ (1 − μ(n + 1)σ2

x) σ2
r

. (32)

In practice, the statistical average E
[
e2(n)

]
can be estimated recur-

sively by its time average:

e2(n) = ρe2(n − 1) + (1 − ρ)e2(n), (33)

where 0 < ρ < 1 is the forgetting factor. Moreover, since the tap-
length of a filter must be an integer, we choose to only keep the
integer part of M(n + 1) after its update by Eq. (32). Finally, the
entire adaptive algorithm is described sequentially by (4), (18), (31),
(32), and (3).

3. SIMULATION RESULTS

In this section, the performance of the proposed method is assessed
via computer simulations. For comparison purposes, we also im-
plemented the fixed tap-length LMS algorithm and the variable tap-
length LMS algorithm in [9]. The setup of all the simulations is sim-
ilar to that in [9]: The impulse response was generated according to
(1), which was a white Gaussian noise sequence with zero-mean and
variance σ2

r of 0.01 weighted by an exponential decay profile. The
impulse response length was N = 1024, and the envelope decay rate
τ was 0.005. One realization of the unknown response is shown in
Fig. 1. The filter input was a zero-mean i.i.d. Gaussian process with
variance σ2

x = 1. The noise was another white Gaussian process
with zero mean and variance σ2

v of 0.01. All the following results
were obtained by averaging over 100 Monte Carlo trials.
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Fig. 1. One realization of impulse response.

First, we evaluated the convergence performance of the pro-
posed method. MSD and MSE curves with respect to the number of
iterations are depicted with different types of LMS algorithms. The
step size for the fixed tap-length LMS algorithm is set to 1/1026,
which corresponds to the optimal step-size in (25). For both the al-
gorithm in [9] and the proposed method, the initial tap-length M(0)
was chosen as 20 and the forgetting factor in (30) was 0.99. The
MSDs are shown in Fig. 2(a). It is seen that the algorithm in [9] con-
verged faster than the fixed tap-length LMS algorithm due to the
variable step size, and both exhibited similar steady-state MSDs.
The proposed method further improved the convergence rate and
achieved lower steady-state MSD, due to the fact that MSD is mini-
mized in terms of both the tap length and step size at each iteration.
The MSEs are shown in Fig. 2(b), which also validates the advan-
tages of the proposed method in terms of both convergence rate and
steady-state performance. We point out that the consistency between
the MSD and MSE results is in agreement with the theoretical anal-
ysis in (30). Both of them are presented here since different appli-
cations may focus on different criteria. For instance, MSD is more
suitable in channel estimation, whereas MSE is preferable in echo
cancellation applications.

The values of tap length and step size of the proposed method
and the method in [9] are shown in Fig. 3. The step sizes are shown
in log scale for demonstration purposes. For the method in [9], it is
seen that the tap length saturates at around 800. Similar variability is
observed for the step size, since the step size simply follows μ(n) =
μ′/(M(n − 1) + δ)σ2

x, with the parameters δ and μ′ being set to 5
and 0.5, respectively. Comparatively, the step size in the proposed
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method saturates at a smaller value, which provides finer coefficients
update. Therefore, the proposed method achieves better performance
(see Fig. 2).

Finally, we evaluate the performance of the proposed method
with respect to the initial value. The steady-state MSDs with differ-
ent initial tap-length are shown in Table 1. It can be observed that
with a wide range of the initial tap-length, the MSD converges to
the value that achieves an effective modeling of the significant en-
ergy within the impulse response. Thus, we claim that the proposed
algorithm is robust to the selection of initial tap-length.

Table 1. Steady-state MSDs with different initial tap-length.

M(0) 20 50 100 200 500 800

MSD(∞) (dB) -29.4 -29.7 28.6 -29.3 -30.1 -29.4

4. CONCLUSIONS

A new variable tap-length and variable step-size LMS algorithm is
proposed in this paper. For the impulse response with an exponential
decay envelope, the tap-length and step-size are obtained by mini-
mizing the MSD at each iteration. Simulation results show that the
proposed method achieves faster convergence rate as well as better
steady-state performance (in terms of MSD and MSE).
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Fig. 2. Comparison of convergence performance with different LMS
algorithms: (a) MSD; (b) MSE.
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