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ABSTRACT
In this paper, we explore the use of a particular multi-
stage adaptation algorithm for a variety of adaptive filtering
applications where the structure of the underlying process
to be estimated is unknown. The proposed algorithm uses
a performance-weighted mixture of LMS filters of various
orders to construct its final output. The algorithm is analyzed
in a stochastic context with respect to its convergence and
mean-square error (MSE) behaviors and is shown to achieve
the best MSE performance of the constituent algorithms in
the mixture. Through simulations, it has been observed that
the mixture structure can offer considerable performance im-
provement for both stationary and time varying observation
sequences.

Index Terms— Universal, prediction, model combination,
model mixture, LMS

I. INTRODUCTION
In this paper, we investigate a particular combination

of adaptive filters, each running the LMS algorithm for
adaptation, as introduced in [1]. The adaptive filters are
combined based on their performance on the underlying task.
Here, we consider one-step-ahead prediction, however, the
algorithm can be readily extended to other applications.
While the minimum mean-square error (MMSE) optimal

filtering structure for a wide-sense stationary random process
contains a single filter, the number of filter parameters (if not
the optimal values of these parameters) are usually assumed
unknown a priori. In fact, for nonstationary observation se-
quences, the number and values of these optimal parameters
will generally be time varying. Furthermore, even when the
number of parameters and the adaptive algorithm to be used
for training these parameters are known, it still remains
difficult to fix the appropriate parameters for the selected
adaptation algorithm [2]. For example, combining two LMS
algorithms one with comparably larger adaptation coefficient
and hence quick convergence, and the other with comparably
smaller adaptation coefficient and hence better steady state
performance, can produce an algorithm that will have the
benefits of each, depending on the state of the underlying
process. Thus, fixing a specific filter structure (or adaptation
algorithm) has potentially significant drawbacks due to the

lack of a priori information about the observation sequence.
A mixture algorithm attempts to overcome these problems by
combining multiple candidate filter structures or adaptation
algorithms, with the goal of sequentially achieving the
performance of the best among them.

In this paper, we investigate the LMS-Bayesian algorithm
as shown in Fig. 1. The LMS Bayesian algorithm was
introduced in [1] and a simplified analysis of its conver-
gence behavior was given in [3]. Here, we will extend
this analysis and remove most of the assumptions used
in the derivations and also demonstrate the performance
of the LMS-Bayesian algorithm under different scenarios.
The LMS-Bayesian algorithm consists of multiple linear
predictors of orders 1 to m in the first stage, operating
in parallel on the observation sequence. The predictors are
each updated with the LMS algorithm, and their predictions
are combined by a performance-weighted mixture. Instead
of selecting a particular predictor order, the LMS-Bayesian
algorithm adaptively combines the output of several different
predictors of varying order to achieve the performance of
the best predictor given any realization. The weight of
each predictor in the final mixture is updated based on
its performance on the past observations. This way, we
exploit the time-dependent nature of the best choice from the
constituent algorithms given any realization. By decoupling
the constituent algorithms from one another and from the
mixture stage, the algorithm can take advantage of regions
in the data where different constituent models outperform
the others. Furthermore, the constituent predictors using the
LMS algorithm of orders from 1 to m can be efficiently
calculated by using lattice filters. A lattice implementation
of an mth order LMS filter will produce predictions of all
the lower-order linear predictors; orders from 1 to m−1 with
the computational complexity O(m). Hence, the mixture
structure can be implemented with a complexity similar to
tapped-delay-line implementation of the LMS algorithm. For
a one-step-ahead prediction problem, an explicit description
of the LMS-Bayesian algorithm is given as follows. Let
x̂k(n) be the output of a sequential linear predictor as
obtained by the LMS algorithm with model order k, i.e.,
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Fig. 1. LMS-Bayesian Algorithm.

x̂k(n) = wT
k (n− 1)xk(n− 1),

ek(n) = x(n) − x̂k(n),
wk(n) = wk(n− 1) + μek(n)xk(n− 1), (1)

where μ is a constant to control stability and rate of conver-
gence, and ek(n) is the prediction error to be minimized in
the mean-square. The weight and input vectors are given
by wk(n − 1) = [wn−1

1,k , . . . , wn−1
k,k ]T and xk(n − 1) =

[x(n − 1), . . . , x(n − k)]T , respectively. Define the LMS-
Bayesian predictor as the following weighted sum over linear
predictors of order less than or equal to m:

x̂(n) =
m∑

k=1

uk(n)x̂k(n), (2)

uk(n) =
exp[−c ln−1(x, x̂k)]∑m

j=1 exp(−c ln−1(x, x̂j))
,

where c is a positive constant and uk(n), the mixture
weights, are proportional to the performance of the kth-
order predictor on the data observed so far. The performance,
ln−1(x, x̂k) =

∑n−1
i=1 [x(i) − x̂k(i)]2, is the accumulated

squared prediction error that results from x̂k(n). For each
new sample at time n, these coefficients are updated using
(1) and (2).
The organization of this paper is as follows. In Section II,

we provide the a prior art. In Section III, we present the main
convergence results of this paper. We then provide an outline
of the proofs, due to space limitations. We then illustrate the
performance gains achieved by the LMS-Bayesian algorithm
for both stationary and non-stationary observations.

II. BACKGROUND
The LMS-Bayesian predictor is similar to a certain uni-

versal linear predictor introduced in [4] wherein the authors
use the same performance-weighted mixture to combine
predictions of multiple-order linear predictors, each using
the RLS algorithm instead of the LMS algorithm. Although
the universal linear predictor is shown to asymptotically

achieve the performance of the best constituent predictor
for any bounded but otherwise deterministic sequence in
[4], we analyze the LMS-Bayesian algorithm in a stochastic
environment and provide convergence results for its mean-
square error and internal weights. The results for determinis-
tic data do not hold in a fairly general stochastic context; for
example, if the observation sequence is a stationary Gaussian
process, the boundedness assumption is invalidated.
In [2], the authors introduced a convex combination of

two adaptive filters and investigated the mean-square con-
vergence properties in a system identification framework.
The coefficient of the convex combination is determined
by means of a stochastic gradient algorithm in order to
minimize the error of the overall structure. For the prediction
problem considered in this paper (and with the same notation
used in this paper), the recursion for the parameter of the
convex combination λ(n) = u1(n) (and naturally 1−λ(n) =
1− u1(n) = u2(n)) is given by

u1(n) =
1

1 + exp[−a(n)]
(3)

where a(n) is updated as
a(n + 1) = a(n) + μa[x̂1(n)− x̂2(n)]
{x(n)− u1(n)x̂1(n)− [1− u1(n)]x̂2(n)}u1(n)[1− u1(n)],

where μa is the learning rate. The parameter a(n) defines
the combination parameter via the sigmoid nonlinearity and
is used to minimize the overall error. The sigmoid is used to
constrain to u1(n) to the range [0, 1] and also to minimize the
gradient noise in adaptation. Using the update for a(n + 1)
in (3), the update for u1(n) is given by

u1(n + 1) =
1

1 + A(n)
, (4)

where
A(n)

�
=

[1− u1(n)]
u1(n)

exp
(
− μa[x̂1(n)− x̂2(n)]

{x(n)− [u1(n)x̂1(n) + u2(n)x̂2(n)]} u1(n)[1− u1(n)]
)

.

For a mixture of only two algorithms, the combination
weight for the LMS-Bayesian algorithm introduced in (2)
is given by [5]

u1(n + 1) =
1

1 + B(n)
, (5)

where
B(n)

�
=

[1− u1(n)]
u1(n)

exp
(
− 2c[x̂1(n)− x̂2(n)]

{x(n)− [x̂1(n) + x̂2(n)]/2}
)

The recursion in (4) is similar to (5). The main difference is
the term u1(n)[1−u1(n)] in the exponent of (4), which is not
present in (5). This multiplicative term will avoid or dampen
the convergence of weight coefficients when either of the
weight coefficients are near 0, i.e., near convergence. To
remedy this, in [2], the authors introduce an ad-hoc update
to constrain either the weight u1(n) or a(n) to avoid the
boundaries.
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III. CONVERGENCE RESULTS FOR THE
LMS-BAYESIAN ALGORITHM

In this section, we will investigate the convergence behav-
ior of the LMS-Bayesian algorithm for stationary Gaussian
data in a stochastic context. We will demonstrate that the
LMS-Bayesian algorithm is consistent in a certain sense
for variance-ergodic Gaussian random processes (i.e., where
the variance estimated from sample paths converges to the
true variance). The results hold for more general stationary
Gaussian processes, however, we use variance ergodicity to
simplify the presentation. The main results of the paper are
given by the following theorem.
Theorem 1: For a wide-sense stationary, variance-ergodic,
Gaussian observation process, the mixture coefficients of the
LMS-Bayesian algorithm up(n) are consistent with proba-
bility 1, such that

up(n) → 0, as n →∞ (pr), p �= min(w, m), (6)

where w is the order of the MMSE-optimal linear filter
of order less than or equal to m and when the learning
parameter μ for the LMS algorithms in the mixture is
selected from a nontrivial interval.
For example, if the underlying process x(n) =∑w
k=1 ckx(n− k)+ ε(n), where ε(n) is a sequence of i.i.d.

Gaussian random variables with zero mean and variance σ 2
ε ,

then w is the order of this auto-regressive process. For a
general stationary Gaussian process, the required order can
be arbitrarily large.
From Theorem 1, we further conclude the following.

Corollary: For a wide-sense stationary, mean ergodic,
Gaussian observation process, the mixture coefficients of the
LMS-Bayesian algorithm up(n) are consistent in mean and
mean square, such that

E[up(n)]→ 0, as n →∞, p �= min(w, m),

E[u2
p(n)]→ 0, as n →∞, p �= min(w, m), (7)

where w is the order of the MMSE-optimal linear filter
of order less than or equal to m and when the learning
parameter μ for the LMS algorithms in the mixture is be
selected from a nontrivial interval.
The proof of Corollary is due to the boundness of u p(n),

i.e., 0 ≤ up(n) ≤ 1. Using this corollary, we give the
following theorem.
Theorem 2: For a wide-sense stationary, mean ergodic,
Gaussian observation process

limn→∞E
{
[x(n)− x̂(n)]2

}
≤ min

p=1,...,m
limn→∞E

{
[x(n)− x̂p(n)]2

}
,

when the learning parameter μ for the LMS algorithms in
the mixture is selected from a nontrivial interval.
This result implies that the LMS-Bayesian algorithm does

not asymptotically do worse than the best of the mixture
algorithms in terms of the final MSE.
Outline of Proof of Theorem 1: We observe that, for all p,

from the definition in Equation (2), the weight coefficients
up(n) can be expressed as

up(n) =
1∑m

k=1 exp
(
c

∑n
l=1[e2

p(l)− e2
k(l)]

)
=

1∑m
k=1 exp [c Yp,k(n)]

, (8)

where we define Yp,k(n)
�
=

∑n
l=1[e

2
p(l) − e2

k(l)] for any p
and k. We next investigate the behavior of the Yp,k(n)’s and
derive the convergence results based on E[Yp,k(n)].
By the Chebyshev inequality, for any ε ∈ R+,

Pr

[∣∣∣∣Yp,k(n)− E[Yp,k(n)]
n

∣∣∣∣ < ε

]
> 1− Var[Yp,k(n)]

n2ε2
, (9)

where Var(x) is the variance of x. We state without proof
the following Lemma,

Lemma: Var[Yp,k(n)] = o(n2), i.e., limn→∞
Var[Yp,k(n)]

n2 =
0.
Hence, in a certain sense, Yp,k(n) behaves like E[Yp,k(n)]

asymptotically and in this sense E[Yp,k(n)] can be used in
(8) to investigate the asymptotic behavior of up(n). Since
the behavior of each E[e2

p(l)] (or E[e2
k(l)]) is well studied

[6], the behavior of

E[Yp,k(n)] = E{
n∑

l=1

[e2
p(l)−e2

k(l)]} =
n∑

l=1

{E[e2
p(l)]−E[e2

k(l)]}

can also be derived following similar lines. We next show
that for predictors with orders p �= w, E[Yp,k(n)] diverges
for at least one of the terms in (8), which causes up(n) to
vanish. This completes the outline of the proof. �

IV. SIMULATIONS
In this section, we illustrate the performance of the LMS-

Bayesian algorithm for stationary and nonstationary data.
The first set of experiments involve prediction of a 4th-order
AR process generated by x(n) = 0.9x(n − 1) − 0.6x(n −
2) + 0.5x(n − 3) − 0.3x(n − 4) + w(n), where w(n) is a
sample function of a stationary white Gaussian process with
mean zero and variance 0.1. As the constituent algorithms,
we use one-step-ahead predictors with orders from 1 to 10,
all using the LMS algorithm for adaptation. The adaptation
coefficient μ for the LMS algorithms are set to 0.15. The
LMS-Bayesian algorithm uses a soft performance-weighted
combination of the constituent algorithms instead of making
hard decision at each sample time. Hence, we compare
its performance to an algorithm (named as “pick” in the
figures) that picks the output of the best performing model
(up to this time) and repeat the prediction, i.e., pick x̂k(n) if
k = arg mini{

∑n−1
t=1 [x(t)−x̂i(t)]2}. We also use a modified

version of this algorithm based on the well known MDL
criteria and choose the best algorithm as, pick x̂k(n) if

k = argmini

{∑n−1
t=1 [x(t) − x̂i(t)]2 + (p/2) log(n− 1)

}
,

where the (p/2) log(n) term is included to penalize higher
model orders. In the this set of experiments, we do not
compare the performance of the LMS-Bayesian algorithm
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Fig. 2. Running average prediction results for the 4th-order
autoregressive process. The correct order “true”, i.e., 4th-
order; the largest-order “highest”, i.e., 10th order; the LMS-
Bayesian indicated by red dotted line “uni”; the “pick”, i.e.,
pick x̂k(n) if k = argmini

∑n−1
t=1 (x(t)−x̂i(t))2; the “mdl”,

i.e., pick x̂k(n) if k = arg mini

∑n−1
t=1 (x(t) − x̂i(t))2 +

(p/2) log(n).

with the convex combination algorithm since it would be
unfair to the convex combination, which uses only two
algorithms. However we observe that an LMS-Bayesian
algorithm using only two filters as the convex combination
performs similarly to the convex combination algorithm [5].
Hence, the LMS-Bayesian algorithm can also be used as a
generalization of the convex combination algorithm for more
than two filters. In Fig. 1, we plot the normalized running
average prediction error for each of the algorithms, as well
as the performance of the correct order LMS predictor (4th-
order), and the largest order LMS predictors (10th-order).
The performance of the LMS-Bayesian algorithm is superior
to the performance of the other algorithms. At the start of
the experiment, since we plot the sequential performance of
the algorithms, the lower-order LMS algorithms outperform
the larger-order ones. This is due to the faster convergence
of the lower order models since they have fewer parameters.
However, as time progresses, the performance of the larger
order LMS algorithms improves.
The performance of the LMS-Bayesian algorithm for

nonstationary data is shown in Fig. 3, where it is applied
to an autoregressive process that switches between a 2nd-
order and a 4th-order process every 500 samples, i.e., x(n) =
−1.4x(n−1)−0.74x(n−2)+ε(n) and x[n] = 0.9x(n−1)−
0.25x(n−2)−0.1x(n−3)−0.2x(n−4)+ε(n)with σ2 = 0.1
and μ = 0.05. The signal starts as a 2nd-order process
and then switches back and forth as a 4th- and 2nd-order
process at time sample 500, 1000, and 1500. The adaptation
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Fig. 3. Running average prediction results nonstationary
data. The largest-order “largest”, i.e., 10th order; the 3rd-
order “3rd”; the LMS-Bayesian algorithm “LMS-bayesian”;
“pick”, i.e., pick x̂k(n) if k = arg mini

∑n−1
t=1 (x(t) −

x̂i(t))2.

parameters are not selected to optimize the convergence. For
the algorithms presented in Fig. 3, we also calculated the
total squared prediction error for an effective window of
size 100 samples for each algorithm due to nonstationarity
of the data and calculated the mixture weights based on the
performance in this sliding window.

V. CONCLUSION
In this paper, we investigated a particular multistage

adaptive filter algorithm. The LMS-Bayesian algorithm is
analyzed in terms of its MSE and mean convergence char-
acteristics. With the aid of some simplifying assumptions,
the LMS-Bayesian algorithm is shown to converge to the
final MSE of the best predictor used in the constituent class.
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