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ABSTRACT

In this work, the steady-state analysis of the Normalized Least
Mean Fourth (NLMF) algorithm under very weak assumptions is
investigated. No restrictions are made on the dependence between
input successive regressors, the dependence among input regres-
sor elements, the length of the adaptive filter, the distribution of
noise and the filter input. Moreover, in our approach, there is no
restriction made on the step size value and therefore the analy-
sis holds for all the values of the step size in the range where the
NLMF algorithm is stable. The analysis is based on the effective
weight deviation vector performance measure [1]. This vector is
the component of weight deviation vector in the direction of the in-
put regressor. The asymptotic time-averaged convergence for the
mean square effective weight deviation, the mean absolute excess
estimation error, and the mean square excess estimation error for
the NLMF algorithm are derived. Finally, a number of simulation
results are carried out to corroborate the theoretical findings.

Index Terms — Adaptive filters, NLMF algorithm, Conver-
gence Analysis.

1. INTRODUCTION

The Normalized Least Mean Fourth (NLMF) algorithm [2] is the
normalized version of the Least Mean Fourth (LMF) algorithm [3].
The analysis of the NLMF becomes difficult because of the nor-
malization term. Therefore, until now, the analysis of the NLMF
algorithm is carried out using some strong assumptions [4, 5], for
example, using the independence assumption [6] or the long fil-
ter assumption [7]. Recently a new performance measure, the ef-
fective weight deviation vector, is introduced for the convergence
analysis of the NLMS algorithm [1]. This vector is the compo-
nent of weight deviation vector in the direction of input regres-
sor vector. It is shown that the effective weight deviation is the
only component that contributes to the excess estimation error [1].
Therefore, the analysis based on the study of this component can
give more insight on the performance of the adaptive algorithm.
In this work, we have used the framework of [1] for the analysis
of the NLMF algorithm using the concept of the effective weight
deviation vector.

The main contribution of this paper is a rigorous convergence
analysis of the NLMF algorithm that has the following advantages:
(1) it holds for arbitrary dependence among successive regressor
vectors, (2) it holds for arbitrary dependence among the elements
of regressor vector, (3) this analysis is not restricted to the class of
long filters, (4) it holds for arbitrary distributions of the filter input

and the noise, and (5) it holds for all the values of the step size in
the range that insures the stability of the NLMF algorithm.

The paper is organized as follows. After introducing the sys-
tem model in the following subsection, a brief overview the newly
introduced performance measure is presented in Section 3. In
Section 4, asymptotic time-averaged convergence analysis for the
mean square effective weight deviation, the mean absolute excess
estimation error, and the mean square excess estimation error of
the NLMF algorithm is carried out. Simulation results are pre-
sented to validate the theoretical findings in Section 5 and paper is
ended with concluding remarks in Section 6.

2. SYSTEM MODEL
Consider the case of adaptive plant identification problem [6, 7].
The output yk of the plant is given by

yk = cT xk + ηk, (1)

where
c = [c1, c2, . . . , cN ]T (2)

is the vector of the unknown system, and

xk = [x1,k, x2,k, . . . , xN,k]T (3)

is the input data vector at time k, ηk is the plant noise, N is the
number of plant parameters, and [·]T is the transpose operation.
The inputs x1,k, x2,k, . . . , and xN,k may be successive samples
of same signal, such as in the case of adaptive echo cancelation
[8] and adaptive line enhancement [9]. They may also be the in-
stantaneous output of N parallel sensors, such as in the case of
adaptive beamforming [6]. The identification of the plant is made
by an adaptive FIR filter whose weight vector wk, assumed of di-
mension N , is adapted on the basis of error ek given by

ek = yk − wT
k xk. (4)

The adaptation algorithm considered in this paper is NLMF algo-
rithm [4] described by

wk+1 = wk +
μ

||xk||2 xke3
k, (5)

where μ > 0 is the algorithm step size and the norm of a vector
x is defined as ||x||2 ≡ xT x. The error ek can be decomposed to
two terms which are the plant noise ηk and the excess estimation
error εk defined by

εk = ek − ηk. (6)
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The parameter εk is also termed as adaptation noise [9] since it
represents the noise that appears at the filter output due to adapta-
tion. The signal behavior of the adaptive filter is described by the
evolution of the moments of εk with the time. The weight devia-
tion vector is defined by

vk = wk − c. (7)

due to (1), (4), (6), and (7), it can be shown that:

εk = −vT
k xk. (8)

3. THE EFFECTIVE WEIGHT DEVIATION VECTOR
PERFORMANCE MEASURE

In this section, a brief overview of the recently proposed perfor-
mance measure called the effective weight deviation vector [1] is
presented. Let uk denote a unit vector along the direction of the
vector xk, that is,:

uk =

{ xk
||xk|| if xk �= 0

an arbitrary unit vector if xk = 0

Consequently, the weight deviation vector vk can be decomposed
to two orthogonal components; the first component vk is the pro-
jection of vk along the direction of vector xk while the second
component ṽk is orthogonal to xk. The vectors vk and ṽk are
given by:

vk = (uT
k vk)uk, (9)

ṽk = vk − vk. (10)

Due to the unit vector uk and (9), the vector vk satisfies

vk =
vT

k xk

||xk||2 xk. (11)

Equations (10) , (11), and (8) imply that:

vT
k xk = vT

k xk = −εk, (12)

Ultimately, it can be shown that:

ṽT
k xk = 0. (13)

Thus, only the component vk contributes to the excess estimation
error. The reminder, ṽk, of the weight deviation vector vk does
not contribute to the excess estimation error. For this reason , vk

is called the effective weight deviation vector [1]. From (9) and
(12), it can be shown that:

|εk| = ||vk||||xk||. (14)

Equation (14) shows that what matters in determining the magni-
tude of excess estimation error is the length of vector vk rather
than the length of vk. Thus, studying the behavior of ||vk|| gives
a generally brighter insight on the performance of the algorithm
than studying the behavior of ||vk||. The theoretical advantage of
vk in the context of the NLMF algorithm is that it can be ana-
lyzed without the need to calculate the mathematical expectations
of quantities normalized by ||xk||2. This is due to the fact that the
normalization by ||xk||2 is already included in the definition of vk

, as seen by (11). Therefore, vk enables a rigorous analysis of the
NLMF algorithm under weak assumptions.

In this work, we derived an upper bound on the long term av-
erage of mean square effective weight deviation (E

[||vk||2
]
), that

is,:

Limsup
k→∞

1

k

k∑
j=1

E
(
||vj ||2), (15)

where the notation “Limsup” is defined by

Limsup
k→∞

sk ≡ Lim
k→∞

(
sup si

i≥k

)
, (16)

where “sup” means supremum. The smaller is the value of long
term average (15), the finer is the steady state performance of al-
gorithm and vice versa. The upper bound of the long term average
(15) is used along with (14) to derive boundedness results for mean
square excess estimation error (E

[
ε2

k

]
) and mean absolute excess

estimation error (E
[|εk|

]
).

4. CONVERGENCE ANALYSIS OF THE NLMF
ALGORITHM

In the ensuing analysis, the following assumptions are used in the
convergence analysis of the NLMF Algorithm. These are quite
similar to what is usually assumed in the literature [1], [2], [3], [6],
[10] and which can also be justified in several practical instances:

A1 The sequences {xk} and {ηk} are mutually independent.

A2 The sequence {xk} is stationary with finite E
[
1/||xk||2

]
.

A3 The sequence {ηk} is a stationary sequence of independent
zero mean random variables with finite variance σ2

η .

Assumptions A1 and A3 are well known independence assump-
tions while assumption A2 can be well justified as in the case of
the NLMS algorithm [1].

4.1. Analysis of the effective weight deviation vector
The update recursion for the weight deviation vector (vk) is ob-
tained using (1), (4), (5), and (7) and can be shown to be:

vk+1 = vk +
μ

||xk||2 xk(ηk − vT
k xk)3. (17)

As we are going to derive the upper bound for steady-state sce-
nario, the higher order terms of vT

k xk can be ignored (since excess
estimation error is very small at steady-state) and thus we can use
the following approximation:

vk+1 ≈ vk +
μ

||xk||2 xk(η3
k − 3η2

kv
T
k xk). (18)

Now, squaring both sides of the above equation and using assump-
tions A1 and A3, it is found that:

E[||vk+1||2] = E[||vk||2] − (6μσ2
η − 9μ2φ4

η)E

[
(vT

k xk)2

||xk||2
]

+ μ2φ6
ηE

[
1

||xk||2
]

, (19)

where φ4
η and φ6

η are the fourth and sixth order moments of the
noise sequence ηk, respectively. Using the definition of weight
deviation vector given in (11), we can rewrite the above equation
as follows:

E[||vk+1||2] = E[||vk||2] − (6μσ2
η − 9μ2φ4

η)E
[||vk||2

]
+ μ2φ6

ηE

[
1

||xk||2
]

. (20)
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Iterating the above equation backward (k−1) iterations and using
the assumption A2, equation (20) can be set up as follows:

E[||vk+1||2] = E[||v1||2] − (6μσ2
η − 9μ2φ4

η)

k∑
j=1

E
[||vj ||2

]
+ kμ2φ6

ηE

[
1

||xk||2
]

. (21)

Since E[||vk+1||2] is a positive quantity and it converges provided
that μ is in the range that insures the stability of the NLMF algo-
rithm [2], on dividing the above equation by k, one obtains:

0 ≤ 1

k
E[||v1||2] − (6μσ2

η − 9μ2φ4
η)

1

k

k∑
j=1

E
[||vj ||2

]
+ μ2φ6

ηE

[
1

||xk||2
]

. (22)

Finally, by taking the limit of the above equation as k → ∞ and

using (16), it can be shown that for 0 < μ <
2σ2

η

3φ4
η

the following

bound exists:

Limsup
k→∞

1

k

k∑
j=1

E
(
||vj ||2) ≤ μφ6

η

(6σ2
η − 9μφ4

η)
E

[
1

||xk||2
]

.

(23)
This relation gives us an upper bound on the long term average
of the mean-squared norm of vk. The above result is obtained
under very weak assumptions and it has all the points of strength
mentioned in Section 1.

4.2. Analysis of the excess estimation error
In analyzing the convergence of excess estimation error, we have
considered the following two scenarios of bounded input plant and
unbounded input plant. For the analysis with bounded plant input,
we need the following assumption [1]:
A4: There exists a positive number D such that ||xk|| ≤ D ∀ k.
The above assumption is valid in many practical cases as naturally
input data is bounded. Now, using relation (14) and assumption
A4, the bound given in (23) is modified to the following:

Limsup
k→∞

1

k

k∑
j=1

E
[
ε2

j

] ≤ μφ6
ηD2

(6σ2
η − 9μφ4

η)
E

[
1

||x1||2
]

. (24)

This bound shows that the long term average of the mean-squared
excess estimation error can be reduced to an arbitrary small value
by using very small value of the step-size provided that 0 < μ <

2
3σ2

η
. Moreover, in achieving the above bound we have used very

weak assumptions and it has the same advantages as in the case
of bound (23). Furthermore, this bound emphasizes the fact men-
tioned in Section 3 that a good behavior of the effective weight
deviation vector implies a good behavior of the excess estimation
error.

In the case of unbounded input plant, here too, we need the
following assumption to simplify the analysis [1]:
A5: The sequence {xk} is stationary with finite E[||xk||2].
This is a weak assumption as the second order moment of input
regressor generally exist. Now, using relation (14) and assumption
A5, the bound given in (23) can be set up as follows:

Limsup
k→∞

1

k

k∑
j=1

E [|εj |] ≤
√

μφ6
ηE [||x1||2]

(6σ2
η − 9μφ4

η)
E

[
1

||x1||2
]
. (25)

This bound implies that the long term average of the absolute ex-
cess estimation error can be reduced to an arbitrary small value by
using very small value of the step-size provided in the range that
insures the stability of the NLMF algorithm. Moreover, it can be
noticed that the upper bound on the right hand side of (25) will
remain unchanged even if the sequence xk is multiplied by a con-
stant. This indicates that the average behavior of the steady-state
excess estimation error is not sensitive to the input power of the
adaptive filter.

5. SIMULATION RESULTS
In this section, the steady-state performance of the NLMF algo-
rithm is investigated in an unknown system identification scenario
with c = [1, 1, · · · , 1]T . The system noise ηk is a zero mean i.i.d.
sequence with variance 0.01. The plant input regressor vector xk

as defined in (3) with xk being stationary zero mean unity variance
correlated sequence obtained as follows:

xk = βxk−1 +
√

1 − β2qk, (26)

where β is a correlation factor and qk is a zero mean unity variance
i.i.d. sequence. In our simulations, we have used β = 0.95 show-
ing a highly correlated input sequence. The objective of our simu-
lations is to validate the derived analytical results without restric-
tions on the dependence between successive regressors, the depen-
dence between the components of regressor, the value of step-size
in the range that insures the stability of the NLMF algorithm, the
length of adaptive filter, and the distribution of the filter input and
the noise.

Figure 1 compares the long term average of the mean-squared
effective weight deviation obtained by simulation and the upper
bound given in (23) for Gaussian ηk and qk with filter length equal
to 4 showing a good match between theory and simulation. It can
be seen that the simulation is carried out over a wide range of step-
size (0.01 to 1). The same experiment is repeated for a filter length
of 32 and is shown in Fig. 2. Therefore, as depicted from these
two figures that the analytical result is valid for both long and
short adaptive filter. Moreover, the results show that the analytical
bound is applicable for both small and large value of step-size.
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Figure 1: Analytical and simulation results with N = 4, Gaussian
ηk and qk.

Next, the same experiment is performed with uniform input
qk and noise ηk and the results are shown in Fig. 3 when the
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Figure 2: Analytical and simulation results with N = 32, Gaus-
sian ηk and qk.

filter length 32. It can be depicted from this figure that the derived
analytical result is not limited to a particular distribution of input
and noise sequences. The analytical upper bound on the long term
average of mean-squared excess estimation error given by (24) is
investigated in Fig. 4 with uniform input qk and noise ηk and filter
length equal to 4. Here too, the analytical result can well model the
simulation results. Finally, similar behavior is obtained for other
input and noise distributions (e.g., Laplacian) and different filter
lengths, but due to space limitations these are not reported here.
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Figure 3: Analytical and simulation results with N = 32, uniform
ηk and qk.

6. CONCLUSION

In this work, a rigorous steady-state analysis of the NLMF algo-
rithm is carried out using a newly proposed performance measure
called the effective weight deviation vector. Asymptotic time-
averaged convergence for the mean square effective weight devi-
ation, the mean absolute excess estimation error, and the mean
square excess estimation error for the NLMF algorithm is per-
formed and consequently new explicit upper bounds for the long
term average of mean-squared effective weight deviation, the mean-
squared excess estimation error, and the mean absolute excess es-

10−2 10−1 100
10−5

10−4

10−3

10−2

 Step Size µ

 A
ve

ra
ge

d 
M

ea
n 

Sq
ua

re
 E

xc
es

s 
Es

tim
at

io
n 

Er
ro

r

Simulation Result
Theoretical Upper Bound

Figure 4: Analytical and simulation results with N = 4, uniform
ηk and qk.

timation error. Simulation results verified our theoretical findings.
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