
Abstract—A unified approach to the steady-state mean square 
error (MSE) and tracking performance analyses for real and 
complex adaptive filtes with error nonlinearities is developed. 
Some general clo ed-form analytical expressions for the steady-
state performances are given. Our analyses are based on Taylor 
series expansion and and so-called complex Brandwood-form 
series expansion (BSE). Under these general explicit expressions, 
some well-known adaptive filters can be viewed as special cases. 
In addition, the closed-form analytical expressions for the steady-
state performance for real and complex least-mean p-power 
(LMP) algorithm with different choices of parameter p are also 
given. A mass of simulations show the accuration of our analyses. 

Index Terms—adaptive filters, steady-state analysis, mean-
square error, tracking performance, Taylor series expression. 

I. INTRODUCTION 

The performance of an adaptive filter is generally measured in 
terms of its transient behavior and its steady-state behavior. There 
have been numerous works in the literature on the performance of 
adaptive filters with many creationary results and approaches [1]-[9]. 
In most of these literatures, the steady-state performance is often 
obtained as a limiting case of the transient behavior. However, most 
adaptive filters are inherently nonlinear and time-variant systems. 
The nonlinearities in the update equations tend to lead to difficulties 
in the study of their steady-state performance as a limiting case of 
their transient performance [6]. Using the energy conservation 
relation, references [5, 6] rederived the steady-state performance for 
a large class of adaptive filters, such as LMS algorithm, LMMN 
algorithm, and so on, which bypassed the difficulties encountered in 
obtaining steady-state results as the limiting case of a transient 
analysis. While it is generally observed that most works for 
analyzing the steady-state performance study individual algorithms 
separately, the energy conservation approach of [5] allows for a 
unified framework that applies to different algorithms.  

The main contribution in this article is to use the energy 
conservation approach [5] to derive a general expression for the 
steady-state performance of adaptive filters with error nonlinearities. 
Rather than obtaining a limiting case of the transient behavior, our 
analyses are based on Taylor series expansions and so-called
complex Brandwood-form series expansion (BSE). BSE was derived 
by G. Yan in [7] under Brandwood’s derivation operators with 
respect to the complex-valued variable and its conjugate, and was 
used to analyze the MSE for Bussgang algorithm (BA) in noiseless 
environments [8]. 

II. SYSTEM MODEL

The stochastic gradient approach for adaptive filters with error 
nonlinearities can be modeled by [5, 6, 8, 9] 

iiiii eef ,1 uww ,                              (1) 

iiii de wu ,                                               (2) 

ioii vd wu ,                                              (3) 
where  is step-size, iu  is row input vector, ow is unknown 
column vector that we wish to estimate, id  is scalar-valued noisy 

measurement, iv  accounts for both measurement noise and modeling 
errors, and ii eef ,  denotes memoryless nonlinearity function 

acting upon the error ie  and its complex conjugate ie . Different 

choices for ii eef ,  result in different adaptive algorithms. For 

example, Table  defines ii eef ,  for many well-known special 
cases of (1) with error nonlinearities [6]. 

III. STEADY-STATE PERFORMANCE FOR ADAPTIVE FILTERS

Define so-call a priori estimation error to be iia ie wu ~ , and 

ioi www~  to be the weight-error vector. Under (2) and (3), the 
relation between ie  and iea  can be expressed as 

iai viee .                                    (4) 
The steady-state MSE for an adaptive filter can be written as 

2Elim i
i

MSE e . To get MSE , we use the following two 

assumptions: 
A.1: The noise sequence iv with zero-mean and variance 

02
v  is independent and identically distributed ( i.i.d)  

and statistically independent of the regressor sequence iu .
A.2: The a priori estimation error iea  with zero-mean is 

independent of iv . And for complex-valued cases, it satisfies 

the circularity condition, namely, 0E 2 iea .
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The above assumptions are popular, which are commonly used in 
the steady-state performance analyses for most of adaptive 
algorithms [5]. Then, the steady-state MSE can be rewritten as 

EMSEvMSE
2 ,                                  (5) 

where EMSE  is the excess mean square error (EMSE), defined by 
2Elim iea

i
EMSE .                               (6) 

Observing from (5), we can find that getting EMSE  is equivalent to 
getting the MSE. 
A. Nonlinear equations of iea

In order to solve for the steady-state performance analysis for 
adaptive algorithms, we first introduce two nonlinear equations of 

iea  based on the energy conservation relation during an equalizer 
update. In a stationary environment, as described in [8, 9], the 
nonlinear equations of iea  can be written as 

eeqee ,E,E 2u ,                         (7) 

where  
2

,,,,Re2, eefeeqeefeee a .         (8) 

Here, for the ease of reading, the index ‘i’ is omitted at steady state, 
that is 

ieevveie iiiaa ,,, uu
Similarly, in a nonstationary environment, a wildly used first-order 

random-walk model is used to get the tracking performance [5, 6]. 
The model assumes that ow  appearing in (3) undergoes random 
variations of the form 

iioio q,1, ww ,                                      (9) 

where iq  denotes some random perturbation. 
A.3: The stationary sequence iq  is i.i.d., zero-mean, with 

covariance matrix QqqE ii , which is independent of the 

regressor sequences iu .
As described in [5, 6], under A.3, we have 

eeqQee ,ETr,E 21 u               (10) 

The above equation will be used to get the tracking performances. 
Comparing (7) with (10), we see that there are actually minor 
differences between mean-square analysis and tracking analysis. 
B. Steady-state performance 

At steady-state, since the behavior of ae  in the limit is likely to be 
less sensitive to the input data when the adaptive filter is long enough, 
the following assumption can be used to obtain the steady-state 
EMSE for adaptive filters, i.e., 

A.4: 2u  is independent of ae .
This assumption is referred to as the separation principle in [5]. 
Under A.4, (11) and (14) can be rewritten as 

eeqee u ,ETr,E R ,                         (11) 
and

eeqQee u ,ETrTr,E 1 R ,           (12) 

respectively, where 2ETr uRu .

Lemma 1 If ee,  is defined by (8), then 

vvfvvvv eee
,Re2,,0, 12

,
.

Here and through out this paper, af i
x  denotes the ith derivative of 

the function xf  with respect to x  at the value ax , and 

baf i
yx ,,  denotes the ith partial derivative of the function yxf ,

with respect to x  and y  at the value byax , .
Proof: 

Using (8), we get 0,Re2,
, veve

eefvevv , and

.,Re2

,,,,

,,,
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2
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,

11
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2
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vvf
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eefveeefeefve
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veveeeeeee
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aee

Lemma 2 If eeq ,  is defined by (8), then 

vvfvvfvvfvvfvvq
eeeeee

,,Re2,,, 2
,

21212
,

Proof:
Using (8), we get 

..,,Re2,,

,,,,

,,

2
,

2121

,

11

,

22
,

vvfvvfvvfvvf

eefeefeefeef
e

eef
ee

vvq

eeee

veve
ee

veve
ee

Then, we can use the above two lemmas to get the steady-state 
performance for adaptive filters. 

Theorem 1  Consider adaptive filters with error nonlinearities of 
the form (1)-(3), and suppose the assumptions A.1-A.4 are satisfied. 
Then, if the following condition is satisfied, i.e., 
C.1 uBA RTr ,
the steady-state EMSE, tracking EMSE (TEMSE) and the optimal 
step-size  for adaptive filters can be approximated by 

u

u
EMSE BA

C
R

R
Tr

Tr
,                                       (13) 

u

u
TEMSE BA

CQ
R

R
Tr

TrTr1
,                        (14) 

AC
QB

C
Q

AC
QB

u
opt

Tr
Tr
TrTr 2

R
,           (15) 

where 
21

2 21 1 2
,

2ReE , ,      E ,

E , E , 2ReE , ,

e

e e e e

A f v v C f v v

B f v v f v v f v v f v v
 (16a) 

for complex-valued data cases, and 
22

,
211 E,EE,E2 vfCvfvfvfBvfA eeee   (16b) 

for real-valued data cases, respectively. 
Proof:

First, we consider the complex-valued cases. The complex BSE 
with respect to aa ee ,  around vv,  for the function ee,  can 
be written as [8, 9] 

3094



aaaeeaeeaee

aeae

eeevvevvevv

evvevvvvee

,,2,,
2
1

,,,,

22
,

22
,

22
,

11

(17) 

where aa ee ,  denotes third and higher-power terms of ae  or ae .

Ignoring aa ee ,  and taking expectation on both sides of (17), we 
get

22
,

22
,

22
,

11

,2,,E
2
1

,E,E,E,E

aeeaeeaee

aeae

evvevvevv

evvevvvvee
  (18) 

Under A.1 and A.2, (i.e. aev,  are mutually independent, and 

0EE 2
aa ee ) and using lemma 1, we obtain 

EMSEAee,E ,                                (19) 
where A is defined by (16a) and EMSE is defined by (6). Similarly, 

replacing ee,  in (18) by eeq , , we have 

EMSEee
vvqvvqeeq ,E,E,E 2

,
.              (20) 

Substituting (20) into the right-hand side of (11), and using Lemma 2, 
we have 

EMSEuu BCeeq RR Tr,ETr ,            (21) 
where B and C are defined by (16a). Then, substituting (19) and (21) 
into (11), we have 

uEMSEu CBA RR TrTr .                   (22) 
Since 0Tr uC R  and 0EMSE , if the condition C.1 is 
satisfied, i.e., uBA RTr , we can obtain (13) for complex-valued 
cases. 

Next, we consider the real-valued cases. Since eev a ,,,u  are real-
valued data, the equality (11) can be simplified to 

2ETrE2 efefe ua R .                        (23) 

The Taylor series expansion for the real estimation error signal ef
with respect to e  around v can be written as 

aaeeae eevfevfvfef 22
,

1
2
1 ,         (24) 

where ae  denotes third and higher-power terms of ae .
Substituting (24) into the left-hand side of (23) yields 

aaeaa eevfevfefe 21E2E2 .           (25) 
Under A.1and A.2, and neglecting aeE , we have 

EMSEa AefeE2 ,                             (26) 
where A is defined by (16b). Similarly, substituting (24) into the 
right-hand side of (23) yields 

EMSEuu BCef RR TrETr 2 ,         (27) 
where B and C are defined by (16b). Then, substituting (26) and (27) 
into (23), we have (22). Then, if the condition C.1 is satisfied, we can 
obtain (13) for real-valued cases. 

Finally, substituting (19) and (21) into (12) for complex-valued 
cases, or substituting (26) and (27) into (12) for real-valued cases, we 
have

uTEMSEu CQBA RR TrTrTr 1 .     (28) 

Here, EMSE  is replaced by TEMSE . Since 0Tr1 Q , we can 
obtain (14) if the condition C.1 is satisfied. Differentiating both-hand 
sides of (14) with respect to , and letting it be zero, we get 

0
Tr

TrTr-1

optopt
u

u
TEMSE BA

CQ
R

R
. (29) 

Simplifying the above equation, we have 

0
Tr
TrTr22

u
optopt C

Q
AC

QB
R

.               (30) 

Solving the above equality, we can obtain the optimum step-size 
expressed by (15). Here, we use the fact 0 . This ends the proof 
of Theorem 1. 
Remarks:
1 Substituting (15) into (14) yields the minimum steady-state 
TEMSE. 
2 In view of the step-size  being very small, the expression (13) 
~ (15) can be simplified to 

uEMSE A
C RTr ,                                  (31) 

A
CQ u

TEMSE
RTrTr-1

,               (32) 

u
opt C

Q
RTr

Tr .                                    (33) 

Substituting (33) into (32) yields the minimum steady-state TEMSE 

QC
A u Tr2

min RTr .                      (34) 

3 For real-valued cases, the steady-state EMSE expression (31) is 
the same as the result (see e.g. Eq. 35) in [4]. 

IV. STEADY-STATE PERFORMANCE FOR THE SPECIAL CASES OF 
ADAPTIVE FILTERS

In this section, based on Theorem 1 and Theorem 2 in Section ,
we will investigate the steady-state performances for the least-mean 
p-order norm (LMP) algorithm [11] with different choices of 
parameter p and the least-mean mixed norm (LMMN) algorithm, 
respectively. 
A. LMP algorithm 

The estimation error of LMP algorithm can be expressed as [11] 

eeeeeeef
pp 2/22,                       (35) 

where 0p  is a positive integral. 2p  results in well-known 
LMS algorithm, and 4p  results in LMF algorithm. 

Substituting (35) into (16a) and (16b), respectively, we get 
,,321,12 22422 p

v
p

v
p

v CppBpA    (36a) 
for real-valued cases, and  

,,1, 224222 p
v

p
v

p
v CpBpA             (36b) 

for complex-valued cases, where kk
v vE . Then, under Theorem 

1, the condition C.1 becomes 
2 2 2Tr p p

u v vR ,                             (37) 

where 322 p  for real-valued cases, and 21pp  for 
complex-valued cases, and the steady-state performance for LMP 
algorithm can be obtained. Here, we only give the expression for 
EMSE, 

complex,
Tr1

Tr

real,
Tr32112

Tr

2222

22

222

22

p
vu

p
v

p
vu

p
vu

p
v

p
vu

EMSE

pp

ppp

R
R

R
R

. (38) 
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For LMS algorithm and LMF algorithm, substituting 4,2p  into 
(38), yields the same steady-state performance results (see e.g. 
Lemma 6.5.1 and Lemma 6.8.1) in [5]. 
B. LMMN algorithm 

The estimation error of LMMN algorithm is [1, 5] 
2, eeeef ,                            (39) 

where 10  and 1 . Substituting (39) into (16a) and 
(16b), respectively, we have 

62422

42
2

2
1

2

2
0

2

2

vvv

vv

v

C

kkB

kA

.                       (40) 

where 15,12,3 210 kkk  for real-valued cases 
9,8,2 210 kkk  for complex-valued cases. Then, substituting 

``,`,2 cBaCbA  or cBaCbA ,,2  into (13) - (15) 
yields the steady-state performance for complex and real LMMN 
algorithm, which coincides with the results (see e.g. Lemma 6.8.1 
and Lemma 7.8.1) in [5]. 

V. SIMULATION RESULTS

In previous section some well-known real and complex adaptive 
algorithms, such as LMS algorithm, LMF algorithm and LMMN 
algorithm, have shown the accuracy of the corresponding analysis 
results. In this section, we only give the computer simulation for the 
steady-state performance of real LMP algorithm with 3p , which 
has not been involved in the previous literatures. In all the cases, an 
11-tap LMP filter with tap-centered initialization is used. The 
variance of Gaussian noise is set 001.02

v , and the regressors 

iu  are generated by feeding correlated data into a tapped delay 

time, i.e., 21 1u i au i a s i ,where 

, 1 , , 1i u i u i u i Lu  , and is  is a unit-variance i.i.d. 

Gaussian random process. Here, we set 8.0a .
For the different choices of step-size, Fig.1 compares the simulated 

and theoretical MSE results and Fig.2 compares the simulated and 
theoretical TMSE results with 52eq , where I2

qQ . From 
these two figures, we can see that the simulated and theoretical 
results are matched reasonable well. In addition, Observing from the 
tracking figure (Fig. 2), we can find that these minimum value is in 
good agreement with the corresponding theoretical values, which 
is 00580opt . .

VI. CONCLUSIONS

This paper develops a unified approach for the steady-state 
performance analyses of adaptive filters with error nonlinearities 
based on Taylor series expansion and complex Brandwood-form 
series expansion. Some general closed-form analytical expressions 
for the steady-state performances are derived. Under these 
expressions, the proposed results for some well-known adaptive 
filters are the same as the results summarized by A. H. Sayed in [5]. 
In addition, the closed-form analytical expressions for the steady-
state performance for real and complex LMP algorithm with different 
parameter p choices are also derived. Computational simulations 
show the accuration of our analyses. 
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