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ABSTRACT

We provide a time domain analysis of the robustness and sta-
bility performance for coupled adaptive algorithms of gradi-
ent type. The considered coupling may occur inherently as
well as by desire of the designer. The presented analyses fo-
cus on system identification. Examples are presented to inves-
tigate convergence and steady-state behaviour by simulations
which are compared to theory. In particular, the presented ap-
proach allows for a deeper understanding of cascaded adap-
tive filters in terms of robustness and l2-stability.

Index Terms— Adaptive filters, system identification, robust-
ness, l2-stability, error bounds.

1. INTRODUCTION

In this paper, we provide a time-domain robustness and
l2-stability analysis for a certain class of adaptive filters
following the lines of [1–5]. The class of adaptive filters
we are investigating is characterised by coupling of their up-
date errors. That is, at least two adaptive filters are running
simultaneously, each impacting the error term of the other.

Note that we consider a type of coupling different to the
one described in [6]. There, the output error of the adaptive
filter is fed back to its own input. Here, in contrast, we study
two more or less independent adaptive filters which are cou-
pled via their error terms but not via their input sequences.

In [7] and [8] cascaded structures of adaptive filters were
proposed. While in [7] the purpose was linear prediction,
in [8] system identification in the context of echo cancellation
was the main focus. We will show that cascaded structures
can be approached by the proposed coupled filter algorithm
and thus can be treated by our theory.

The paper is organized as follows: we present the basic
problem of coupled filters and their robustness analysis in
Sec. 2. How coupling affects the steady state behaviour is
treated in Sec. 3. Sec. 4 investigates the coupled combina-
tion of a slow and a fast adaptive filter. Sec. 5 shows how the
proposed theory can be applied to cascaded adaptive filters to
analyse their stability. The paper closes with some concluding
remarks.

2. COUPLED GRADIENT TYPE ALGORITHM

Consider two transversal filters, g of length Mg and h of
length Mh, with in general differing input sequences xk and
uk. System uncertainties are modelled at the output of g re-
spectively h by the additive noise sequences vg,k and vh,k.
Thus, the overall outputs become (cmp. Fig. 1)

yk = gTxk + vg,k (1)

zk = hTuk + vh,k (2)

with the input vectors xk =
[
xk, xk−1, . . . , xk−Mg+1

]T
and

uk = [uk, uk−1, . . . , uk−Mh+1]
T.

In a conventional situation, both filters are being identified
by two adaptive Finite Impulse Response (FIR) filters, ĝk of
length Mĝ and ĥk of length M

ĥ
, separately minimizing the

individual output errors ẽk and f̃k. However, as a special case,
we assume that the errors are linearly interfering with each
other in the following manner:

ẽk = yk − ĝT
kxk + νg(zk − ĥT

kuk) (3)

f̃k = zk − ĥT
kuk + νh(yk − ĝT

kxk), (4)

where νg and νh are real valued coupling factors.

2.1. Noisefree stability analysis

If the adaptation is performed by the Least-Mean-Squares
(LMS) algorithm, ĝk and ĥk are updated following

ĝk+1 = ĝk + μgx
∗
kẽk (5)

ĥk+1 = ĥk + μhu
∗
kf̃k, (6)

where for simplicity reasons the positive step-sizes μg and
μh are assumed to be constant. If the filters g and ĝk re-
spectively h and ĥk are same length, the tap error weights
g̃k = g − ĝk and h̃k = h − ĥk can be introduced. Con-
sequently, combining equations (5) and (6) leads in the noise
free case (i.e., vg,k = vh,k = 0) to

[
g̃k+1

h̃k+1

]
=

[
I− μgx

∗
kx

T
k −νgμgx

∗
ku

T
k

−νhμhu
∗
kx

T
k I− μhu

∗
ku

T
k

] [
g̃k

h̃k

]
.

(7)
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ẽk

νh

g

ĝ
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Fig. 1. Coupled adaptive filters.

It can be shown that only two singular values of the matrix
in (7) can differ from one. Although, the matrix in general
changes with each iteration, those two singular values decide
on stability or instability. However, a further analysis will be
presented elsewhere.

Incorporating also the noise terms in (7) allows for a clas-
sical second order moments analysis (see e.g. [5]). Such anal-
yses provided the theoretical graphs which are presented in
Fig. 2 and Fig. 3 together with the corresponding simulation
results.

2.2. Robustness analysis

Including uncertainties like modelling errors and noise, this
section will lead to a sufficient criterion for stability in the
l2-sense, following the robustness analysis from [1–5].

In the sequel, we will consider the adaptive filter ĝk in
Fig. 1, due to symmetry the results analogously apply to ĥk.
In [5] (p.1042ff), it is shown that for any constant step-size
μg ≤ max1≤l≤k ‖xl‖−2

2 the energy of the undisturbed error
ek = gT

kxk − ĝT
kxk at time instant k is bounded by

k∑
l=1

|el|2 ≤ 1

μg

‖g − ĝ0‖22 +

k∑
l=1

|ṽg,l|2, (8)

where ĝ0 denotes the initial condition of the adaptive filter
and ṽg,l = vg,k + νgfk with fk = hT

kuk − ĥT
kuk comprises

the additional noise components. By some straightforward
manipulations, (8) leads to

√√√√ k∑
l=1

|el|2 ≤ 1√
μg

‖g−ĝ0‖2+
√√√√ k∑

l=1

|vg,l|2+
√√√√ν2

g

k∑
l=1

|fl|2.

(9)
For the LMS filter ĥk, a corresponding expression can be
found. Combining latter with (9) provides an upper bound

for the square root of the error energy:

√√√√ k∑
l=1

|el|2 ≤ 1

1− |νgνh|

⎡
⎣ 1√

μg

‖g̃0‖2 +

√√√√ k∑
l=1

v2
g,l

+ |νg|
⎛
⎝ 1√

μh

‖h̃0‖2 +

√√√√ k∑
l=1

v2
h,l

⎞
⎠

⎤
⎦ . (10)

Considering (10) and the analogous expression for fk allows
for the following interpretations from the robustness analysis:

1. For constant step-sizes μg ≤ maxk ‖xk‖−2
2 and

μh ≤ maxk ‖uk‖−2
2 , l2-stability is guaranteed as long

as the product of the coupling factors

|νgνh| < 1. (11)

Note that in general this bound is rather conservative.

2. Since only the product is relevant, asymmetric coupling
with even a relatively strong coupling factor can still re-
sult in robust behaviour as long as the second coupling
factor compensates for it.

3. If only one coupling factor exists (i.e., the other is zero),
both adaptive filters have the same stability bounds as
if they are running independently.

3. STEADY-STATE BEHAVIOUR

As an example, consider two adaptive filters which are in-
tended to work independently, but by some undesired design
shortcomings the outcomes of the filters turn out to be cou-
pled. We present a simulation example for two random filters
of unit norm with length Mg = Mh = 20, each excited by
an independent real-valued white Gaussian input sequence of
unit variance. The output of the filters is disturbed by addi-
tive white Gaussian noise of variance σ2

v,g = σ2
v,h = 10−4.

Typical step-sizes μg = μh = 0.15/Mg are chosen and by
simulation the learning curves are determined for equal cou-
pling factors νg = νh in the range of [−1, 1]. In general, the
coupling appears to be harmful, deteriorating the performance
of the adaptive algorithm. Figure 2 depicts the steady-state
performance of the relative system misadjustments, given by

‖h− ĥk‖22
‖h‖22

respectively
‖g − ĝk‖22
‖g‖22

, (12)

and compares them to the results of the classical second order
moment analysis. An excellent agreement with theory can be
observed (maximal deviation is 0.05dB).
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Fig. 2. Steady-state parameter error energy over νg = νh.

4. ADAPTIVE SLOW-FAST FIR FILTERS

In [9, 10] an application of adaptive filters was presented
where two LMS algorithms run independently in parallel
at the same time, one with a small step-size guaranteeing
low steady-state values and the other with a large step-size
achieving fast convergence. By a clever convex optimization
algorithm the best linear combination of both is selected.

In contrast, this section applies the structure of Fig. 1
to identify one unknown system (i.e., g = h and vg,k =
vh,k = vk) by two adaptive LMS filters with differing step-
sizes (μg > μh) and coupled errors. Consequently, both fil-
ters are excited by the same sequence xk = uk. In the sim-
ulations, the results for several random unit norm reference
systems were averaged. All filters have same length Mg =
Mh = 20. The sequences xk and vk are white Gaussian and
independent. The step-sizes are chosen to be μg = 0.5/Mg

for the fast filter and μh = 0.05/Mh for the slow filter. Fig. 3
presents the corresponding learning curves for (a) zero cou-
pling and (b) νg = 1, νh = −1. Again, we observe an excel-
lent agreement between the simulation results and the second
order moments analysis. In case (b) the coupling lies just out-
side the margin of robustness derived in Sec. 2.2. Here, no
instabilities occurred which leads to the conclusion that for
the considered realisations the bound given by (11) is too re-
strictive.

5. CASCADED ADAPTIVE FIR FILTERS

It is well known that the longer an adaptive filter is, the slower
is its optimum learning rate. Thus, cascaded filters of shorter
length could be useful in increasing the convergence speed of
adaptive filters. Consider the case of two cascaded FIR filters
as depicted in Fig. 4. Note that the structure proposed here
is different compared to the cascade structures in [7] and [8].
In [7] the LMS filters were applied for linear prediction and
thus not in the context of system identification. In [8] the
purpose of the filters is system identification but the update of
both is performed by the same error leading to poor quality.
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Fig. 3. Learning curves for zero coupling and νg = −νh = 1.
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Fig. 4. Cascaded adaptive filters.

The update of the filters ĝk and ĥk is performed according
to (again for simplicity reasons fixed step-sizes are assumed)

ĝk+1 = ĝk + μgŵ
∗
k(zk − ĝT

kŵk), (13)

ĥk+1 = ĥk + μhû
∗
k(zk − ĥT

kûk). (14)

with

ûk =
[
ĝT

kxk, ĝT
k−1xk−1, . . . , ĝ

T
k−Mg+1xk−Mg+1

]T
, (15)

ŵk =
[
ĥT

kxk, ĥT
k−1xk−1, . . . , ĥ

T
k−Mh+1xk−Mh+1

]T
. (16)

In the sequel, we assume that the reference system can be
separated into two transversal filters g and h of same length
Mg = Mh = M . Then, the update errors are given by

ek = zk − ĝT
kŵk = (g − ĝk)Tŵk + gT(wk − ŵk) (17)

fk = zk − ĥT
kûk = (h− ĥk)Tûk + hT(uk − ûk). (18)

Assuming small step-sizes, the variation with time of gk and
hk can be approximatively discarded. Hence,

gT (wk − ŵk) ≈ gTXk

(
h− ĥk

)
= uT

k

(
h− ĥk

)
(19)
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Fig. 5. Parameter error energy for cascaded LMS filters.

where Xk = [xk,xk−1, . . . ,xk−Mg+1]
T was used. An analo-

gous expression can be found for hT (uk − ûk). Substituting
these approximations in (17) respectively (18) leads to

ek ≈ gT
kŵk − ĝT

kŵk + hT
kûk − ĥT

kûk, (20)

fk ≈ hT
kûk − ĥT

kûk + gT
kŵk − ĝT

kŵk. (21)

Comparing (20) with (3) respectively (21) with (4) (note that
here the .̃ is suppressed since no noise terms are considered)
leads to the conclusion that the cascaded structure in Fig. 4
can be approximatively analysed by the system in Fig. 1 with
νg = νh = 1, uk = ûk and xk = ŵk. Thus, from a robust-
ness point of view such filtering is right on the stability bound
given by (11), which may be rather conservative.

In the following experiment we compare the learning be-
haviour of the cascaded LMS algorithm in Fig. 4 with M =
11 to a single LMS with a filter length of 2M − 1. For
the cascaded structure, the step-sizes μg = μh = 0.1/M
are chosen (step-sizes of 0.15/M lead to instable behaviour).
The filters are initialised by ĝ0 = [1, 0, . . . , 0]

T and ĥ0 =

[0, 1, 0, . . . , 0]
T. If they were not different, both adaptive fil-

ters would converge to the same solution, since μg = μh. An
alternative would be to start with identical initial values but
different step-sizes. In any case, the initialisation has high im-
pact on the learning behaviour. To obtain comparable results,
the single LMS has a step-size of μLMS = 0.1/(2M − 1). As
in the previous experiments, the excitation signal is a zero-
mean white Gaussian random sequence.

Fig. 5 depicts the relative system misadjustment for the
cascade structure as well as for the single LMS, both in the
noisefree case. The simulations average the results for 500
random unit norm reference systems. It can be observed that
in the mean the cascade structure performs very poor com-
pared to the single LMS. The convergence behaviour strongly
depends on the initial value of the adaptive filters as well as

on the actual configuration of the reference system. This can
also be seen in Fig. 5, which additionally shows for the cas-
cade structure the fastest and the slowest converging results
out of all performed averaging passes.

We conclude that it does not pay off to apply cascaded
techniques in order to gain learning speed or precision. Nev-
ertheless, the cascade mode can be formulated in a stable
form.

6. CONCLUSION

In this paper we proposed a coupled adaptive gradient type
algorithm. An l2-stability bound was derived based on a ro-
bustness analysis. Simulations in conjunction with second
order moments analyses were presented. They revealed that
in general coupling does neither improve the steady-state be-
haviour nor the convergence speed. However, applying the
presented robustness analysis to cascaded adaptive filters al-
lows for finding an l2-stability bound in the case of small
step-sizes. The treated cascaded structure is of further in-
terest in the context of digital pre-distortion, when another
cascaded structure, a Wiener-Hammerstein system, needs to
be matched to an unknown dynamic nonlinear systems. An
investigation in this context is left to future work.

7. REFERENCES

[1] A. H. Sayed and M. Rupp, “A time-domain feedback analysis
of adaptive gradient algorithms via the small gain theorem,” in
Proc. SPIE 1995, San Diego, USA, Jul. 1995, pp. 458–469.

[2] M. Rupp and A. H. Sayed, “A time-domain feedback analysis
of filtered-error adaptive gradient algorithms,” IEEE Trans. On
SP., vol. 44, no. 6, pp. 1428–1439, Jun. 1996.

[3] A. H. Sayed and M. Rupp, “Error-energy bounds for adaptive
gradient algorithms,” IEEE Trans. on SP., vol. 44, no. 8, pp.
1982–1989, Aug. 1996.

[4] A. H. Sayed and M. Rupp, “Robustness issues in adaptive fil-
tering,” in The DSP Handbook. CRC Press, 1998.

[5] A. H. Sayed, Fundamentals of adaptive filtering, John Wiley
& Sons, Inc., Hoboken (NJ), USA, 2003.

[6] W. A. Sethares and I. M. Mareels, “Nonlinear dynamics in
adaptive echo cancellation,” 32nd Midwest Symp. on Circuits
& Systems, pp. 873–876 vol.2, Aug. 1989.

[7] D. Y. Huang, X. Su, and A. Nallanathan, “Characterization of a
cascade lms predictor,” ICASSP ’05, vol. 3, pp. iii/173–iii/176
Vol. 3, Mar. 2005.

[8] R. T. Flanagan and J.-J. Werner, “Cascade echo canceler ar-
rangement,” U.S. Patent 6,009,083, Dec. 28, 1999.

[9] J. Arenas-Garcı́a, A. R. Figueiras-Vidal, and A. H. Sayed,
“Mean-square performance of a convex combination of two
adaptive filters,” IEEE Trans. on SP., vol. 54, no. 3, pp. 1078–
1090, Mar. 2006.

[10] M. T. M. Silva and V. H. Nascimento, “Improving the tracking
capability of adaptive filters via convex combination,” IEEE
Trans. on SP., vol. 56, no. 7, pp. 3137–3149, Jul. 2008.

3088


