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ABSTRACT
The stochastic MV-PURE estimator has recently emerged as
the robust solution for frequently occuring in practice prob-
lem of linear estimation in ill-conditioned and imperfectly
known linear stochastic model. In this paper we provide the-
oretical results showing that the stochastic MV-PURE esti-
mator can be used to the greatest effect in highly noisy set-
tings. In such settings, we discuss the relation between the
stochastic MV-PURE estimator and the well-known reduced
rank Wiener filter. We verify the theoretical results presented
by a means of numerical simulations.
Index Terms— Stochastic MV-PURE estimator, parame-

ter estimation, reduced-rank estimation

1. INTRODUCTION

The problem of robust linear estimation of a random vector
x in the linear stochastic model y = Hx + n is of central
importance in many fields of signal processing (such as mod-
ern wireless communications [1–3]), where the estimation is
performed under imperfect statistical knowledge on the ob-
servable random vector y and/or the random vector x to be
estimated.
In this paper we focus on the recent solution to the prob-

lem of robust estimation under imperfect model knowledge:
the stochastic MV-PURE estimator [4]. This estimator has
been designed as an optimal fusion of the well-known reduced
rank Wiener filter [5–7], and the widely popular in wireless
communication community distortionless-constrained esti-
mator [1,2,8–10], which is recognized in the settings consid-
ered in [4] as the full-rank stochastic MV-PURE estimator.
The robustness of the stochastic MV-PURE estimator was

demonstrated in [4], where it was employed as a linear re-
ceiver in a multiple-input multiple-output (MIMO) wireless
communication system. In this simulation, we verified that
under the real-world settings of limited model knowledge
available at the receiver, the stochastic MV-PURE estimator
achieved lower mean square error (MSE) and symbol error
rate (SER) than the (MSE-optimal in the theoretical settings
of perfect model knowledge) Wiener filter [8, 11], as well as
than the aforementioned reduced rank Wiener filter and the
distortionless-constrained estimator. Moreover, we obtained
in [4] a transparent expression of the MSE of the stochastic

MV-PURE estimator, which shows clearly when the MSE
of the stochastic MV-PURE estimator will be significantly
lower than that of its full-rank version, the distortionless-
constrained estimator.

The stochastic MV-PURE estimator builds on the pre-
viously introduced in [12, 13] minimum-variance pseudo-
unbiased reduced-rank estimator (MV-PURE), developed for
the deterministic estimation in the linear regression model.
The results obtained in [12, 13] not only define conditions,
under which the (deterministic) MV-PURE estimator should
be optimally used, but also show that this estimator encom-
passes previously known reduced-rank estimators developed
in the deterministic framework as its special cases. There-
fore, the results of [12, 13] achieve clear positioning of the
MV-PURE estimator among the reduced-rank estimators.

It is the goal of this paper to provide a similar characteri-
zation of the stochastic MV-PURE estimator. More precisely,
we will validate by theoretical results, that the stochastic MV-
PURE estimator can be used to the greatest effect in the ill-
conditioned, highly noisy situations. Interestingly enough, we
will show that precisely in such conditions, the reduced rank
Wiener filter is very close to the (full-rank) Wiener filter, and
hence cannot provide greater robustness than its full-rank ver-
sion, if only imperfect model knowledge is available. In par-
ticular, the theoretical results presented in this paper naturally
agree with the numerical simulations provided in [4], and give
valuable insight into properties of the stochastic MV-PURE
estimator. Moreover, we present further numerical simula-
tions, which also confirm in practice the theoretical results
presented.

Unless otherwise stated, all singular value decomposi-
tions (SVDs) [14] have singular values organized in nonin-
creasing order. The singular values are always denoted by
the same letter (in lowercase) as the matrix containing them.
Moreover, by SV D(X) = UΣV t we will mean that UΣV t

is a SVD of X , and by rk(X) = r we will mean that X has
rank r.

Due to lack of space, all proofs are omitted.
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2. PRELIMINARIES

2.1. Estimation in linear stochastic model

In this paper we consider the linear stochastic model of the
form:

y = Hx+ n, (1)
where H ∈ R

n×m is a known matrix of rank m, and y ∈
R

n, x ∈ R
m, n ∈ R

n are random vectors. It is assumed that x
and n are uncorrelated,Rxn = 0, and thatRx � 0, Rn � 0 are
known positive definite covariance matrices. Note that from
our assumptionsRy = (HRxH

t +Rn) � 0 andRxy = RxH
t

are available, with rk(Rxy) = m.
It can be easily verified that any two random vectors

x ∈ R
m, y ∈ R

n, for which Rx, Ry, Ryx are known, where
rk(Ryx) = m, and for which the joint covariance matrix
is positive definite, can be cast into model (1) by setting
H = RyxR

−1
x and n = y − RyxR

−1
x x, see [4, 8]. Therefore,

model (1) encompasses a huge variety of problems in com-
munications1, control, signal processing, statistics, and many
other fields (see e.g. [8,11], which are excellent references on
this subject).
The problem considered is that of linear estimation of x

given y, under the mean square error criterion. Thus, we seek
to find a fixed matrix W ∈ R

m×n, called here an estimator,
for which the estimate of x given by:

x̂ = Wy, (2)

is optimal with respect to a certain measure related to the
mean square error of x̂:

J(W ) = tr
[
E[(x̂− x)(x̂− x)t]

]
=

tr[WRyW
t] − 2tr[WRyx] + tr[Rx]. (3)

2.2. Known linear estimators

The well-known unique solution to the problem of minimiz-
ing (3) is the linear minimummean square error estimator, de-
notedMMSE (often called theWiener filter), given by [8,11]:

WMMSE = RxyR
−1
y = RxH

t(HRxH
t + Rn)

−1. (4)

Similarly, the reduced rank (Wiener) MMSE filter [5–7],
denoted RR-MMSE, minimizes the MSE among reduced-
rank estimators:{

minimize J(Wr)

subject to Wr ∈ Xm×n
r ,

(5)

where Xm×n
r = {Wr ∈ R

m×n : rk(Wr) ≤ r} is the set of
rank-constrained matrices in R

m×n. Problem (5) produces as
a solution:

W r
RR−MMSE = VrV

t
r WMMSE , (6)

where SV D(R
−1/2
y HRx) = UΣV t, with V = (v1, . . . , vm)

and Vr = (v1, . . . , vr) for r ≤ m.

1In particular, in wireless communications employing modern techniques
such as CDMA, MIMO, OFDM [1–3].

Another estimator, which is also the solution of a con-
strained MSE minimization, achieves perfect reconstruction
of the target random vector in the noiseless case. More
precisely, the distortionless-constrained estimator, denoted
C-MMSE, is a solution of the following linearly constrained
MSE minimization problem (see e.g. [8]):{

minimize J(W )

subject to WH = Im,
(7)

with the unique solution:

WC−MMSE = (HtR−1
y H)−1HtR−1

y = (R
−1/2
y H)†R

−1/2
y ,
(8)

where (R
−1/2
y H)† denotes the Moore-Penrose pseudoinverse

of (R−1/2
y H) [14].

2.3. Stochastic MV-PURE estimator

The stochastic MV-PURE estimator, introduced in [4], op-
timally combines the reduced-rank (5) and distortionless-
constrained approaches (7), by achieving smallest distor-
tion among reduced-rank estimators.2 More precisely, the
stochastic MV-PURE estimator is defined as a solution of the
following problem, for given rank constraint r ≤ m:⎧⎨

⎩
minimize J(Wr)

subject to Wr ∈
⋂
ι∈I

Pι
r, (9)

where

Pι
r = arg min

Wr∈X
m×n

r

‖ WrH − Im ‖2
ι , ι ∈ I, (10)

where I is the index set of all unitarily invariant norms (i.e.,
norms satisfying ‖ UXV ‖=‖ X ‖ for all orthogonal U ∈
R

m×m, V ∈ R
n×n and all X ∈ R

m×n, see [14]).
The following Theorem, cited from [4], provides a closed

algebraic form of the stochastic MV-PURE estimator.

Theorem 1 ( [4]) 1. Let us set rank constraint r < m and let
us set:

K =
(
HtR−1

y H
)−1

− 2Rx. (11)

Moreover, let the symmetric matrixK be given with an eigen-
value decomposition EV D(K) = EΔEt, with eigenvalues
organized in nondecreasing order:

δ1 ≤ δ2 ≤ · · · ≤ δm.

Then W r
MV−PURE ∈ R

m×n is a solution to problem (9) if
and only ifW r

MV−PURE is of the following form:

W r
MV−PURE = ErE

t
rWC−MMSE , (12)

2See [4] for in-depth discussion of optimality of the proposed approach.
For further insight into the MV-PURE estimation, see the original papers
[12,13], where the deterministic version of the MV-PURE estimator was de-
veloped.
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where WC−MMSE is of the form (8), and where E =
(e1, . . . , em)withEr = (e1, . . . , er) for r < m. If δr �= δr+1,
the solution is unique. Moreover, we have:

J(W r
MV−PURE) =

r∑
i=1

δi + tr[Rx]. (13)

2. For no rank constraint imposed, i.e. when r = m, the
solution to problem (9) is uniquely given byWm

MV −PURE =
WC−MMSE . In particular, we have:

J(Wm
MV −PURE) = J(WC−MMSE) =

m∑
i=1

δi + tr[Rx].

(14)

Note that immediately from (13) and (14) we obtain that
J(W r

MV−PURE) < J(WC−MMSE) if and only if:

m∑
i=r+1

δi > 0. (15)

Moreover, we showed in [4], that in a common in sig-
nal processing case of Rx = Im (see e.g. [15]), upon setting
SV D(R

−1/2
y H) = UΣV t, with σ1 ≥ · · · ≥ σm > 0 the

singular values of R−1/2
y H , we have for all r < m

W r
MV−PURE = ṼrṼ

t
r WMMSE , (16)

where Ṽ = (v1/σ1, . . . , vm/σm) ∈ R
m×m with Ṽr =

(v1/σ1, . . . , vr/σr) ∈ R
m×r for r < m, and whereWMMSE

is of the form (4) for Rx = Im. If σr �= σr+1, the solution is
unique. Moreover, we showed in [4] that:

J(W r
MV −PURE) =

r∑
i=1

σ−2

i − 2r + m, (17)

and for r = m we haveWm
MV−PURE = WC−MMSE with:

J(Wm
MV−PURE) = J(WC−MMSE) =

m∑
i=1

σ−2

i − m. (18)

Note that from (17)-(18), we obtain immediately that:

J(WC−MMSE)−J(W r
MV−PURE) =

m∑
i=r+1

σ−2

i +2(r−m).

(19)

3. WHY THE STOCHASTIC MV-PURE ESTIMATOR
EXCELS IN HIGHLY NOISY SITUATIONS?

In this section, we provide first the main theoretical results of
this paper.
Let δ ∈ R+, whereR+ is the set of nonnegative real num-

bers, and let us define:

Ry(δ) := HRxH
t + δRn. (20)

Then, we have:

lim
δ→∞

Ht(Ry(δ))
−1H = 0 ∈ R

m×m. (21)

The following Proposition holds.

Proposition 1 Let reduced rankWiener filterW r
RR−MMSE =

VrV
t
r WMMSE be given as in (6), where SV D(R

−1/2
y HRx) =

UΣV t, with V = (v1, . . . , vm) and Vr = (v1, . . . , vr) for
r < m. Note that we obtain thus

EV D(RxH
tR−1

y HRx) = V (ΣtΣ)V t.

Then, for all r = 1, . . . , m − 1, we have:

∀ ι ∈ I ‖ WMMSE − W r
RR−MMSE ‖ι≤(

1/
√

λn(Ry)

)
‖

⎛
⎜⎝

σr+1 0 0

0
. . . 0

0 0 σm

⎞
⎟⎠ ‖ι, (22)

where λn(Ry) is the smallest singular value ofRy, and where
I is the index set of all unitarily invariant norms.

We consider now the common in signal processing case
of Rx = Im, and we focus on the behaviour of the estimators
under consideration in highly noisy situations.
We note first that as δ increases, all eigenvalues of Ry(δ)

(20) grow unboundedly, thus in particular 1/
√

λn(Ry) con-
verges to 0.Moreover, as δ increases, from (21) we obtain that
the matrix HtR−1

y H becomes severely ill-conditioned, with
its eigenvalues σ2

1 ≥ · · · ≥ σ2
m > 0 pulling toward 0.3

Thus, from (19) we obtain immediately that in highly
noisy settings of large δ, the stochastic MV-PURE estimator
achieves much better performance than the C-MMSE esti-
mator, since the term

∑m
i=r+1

σ−2

i in (19) may be extremely
large.
It is thus very interesting to note that precisely in such

highly noisy settings, from Proposition 1 we conclude that as
δ increases, the reduced rankWiener filterW r

RR−MMSE con-
verges to the Wiener filter WMMSE , for all rank constraints
r < m. Therefore, the reduced rank Wiener filter does not
provide gain in performance over the full-rank Wiener filter
in highly noisy situations.
We conclude therefore that in highly noisy situations, the

stochastic MV-PURE estimator achieves huge gain in perfor-
mance over the C-MMSE estimator, and that the RR-MMSE
estimator provides very similar performance to the MMSE
estimator.

4. NUMERICAL EXAMPLE

In a numerical example provided in [4], the linear stochastic
model (1) represented a MIMO wireless communication sys-
tem, where we consideredm = 8 and n = 8 transmit and re-
ceive antennas, respectively. Thus, to check the performance

3Note that, with our usual notation, we have SV D(R
−1/2

y H) =

UΣV t
⇒ EV D(HtR

−1

y H) = V (ΣtΣ)V t.
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of the stochastic MV-PURE estimator in a different settings,
we chose a much larger m = 100, n = 200 system in the
current simulations, where we illustrate the theoretical results
provided in section 3. The entries ofH are realizations of iid.
zero-mean Gaussians with unity variance, and the resulting
H is a well-conditioned matrix with singular values approx-
imately equal to 23.39, 22.76, . . . , 4.86, 4.47. Similarly, the
entries of the input random vector x were iid. Gaussians with
unity variance, and we consideredQ = 400 realizations of x.
We assumed correlated Gaussian noise, with covariance ma-
trix δRn � 0, where δ > 0. The SNR was defined as:

SNR :=
tr[HHt]

δtr[Rn]
.

In the simulations depicted in Fig.1, we assumed that
the matrix H is available, but that the noise covariance ma-
trix δRn is not. Thus, in order to construct the estimators
under consideration, the covariance matrix Ry was approx-
imated in their definitions using its finite sample estimate
Ry ≈ R̂y = 1

Q

∑Q
q=1

yqyt
q , where Q = 400 is the length of

the data transmitted. The rank of the stochastic MV-PURE
estimator was chosen in order to minimize (17)-(18), and we
used the form of the stochastic MV-PURE estimator given in
(16). Moreover, since we are not aware of a similarly simple
rank-selection criterion for the RR-MMSE estimator, we al-
ways used the same rank for both the stochastic MV-PURE
and RR-MMSE estimators.
By evaluating the performance of the estimators under

consideration, Fig. 1 demonstrates that the theoretical results
of section 3 are applicable also for the case, where the co-
variance matrix Ry is replaced by its finite sample estimate.
Indeed, the discussion presented in section 3 provides full ex-
planation of the results shown in Fig. 1.
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Fig. 1. Performance of MMSE, RR-MMSE, C-MMSE and
stochastic MV-PURE estimators for the case of imperfectly
known covariance matrix Ry.
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