WHY THE STOCHASTIC MV-PURE ESTIMATOR
EXCELS IN HIGHLY NOISY SITUATIONS?

Tomasz Piotrowski and Isao Yamada

Department of Communications and Integrated Systems (S3-60),
Tokyo Institute of Technology, Tokyo 152-8552, Japan
Phone: +81-3-5734-2503, Fax: +81-3-5734-2905
E-mail addresses: {tpiotrowski, isao }@comm.ss.titech.ac.jp

ABSTRACT

The stochastic MV-PURE estimator has recently emerged as
the robust solution for frequently occuring in practice prob-
lem of linear estimation in ill-conditioned and imperfectly
known linear stochastic model. In this paper we provide the-
oretical results showing that the stochastic MV-PURE esti-
mator can be used to the greatest effect in highly noisy set-
tings. In such settings, we discuss the relation between the
stochastic MV-PURE estimator and the well-known reduced
rank Wiener filter. We verify the theoretical results presented
by a means of numerical simulations.

Index Terms— Stochastic MV-PURE estimator, parame-
ter estimation, reduced-rank estimation

1. INTRODUCTION

The problem of robust linear estimation of a random vector
X in the linear stochastic model y = Hx + n is of central
importance in many fields of signal processing (such as mod-
ern wireless communications [1-3]), where the estimation is
performed under imperfect statistical knowledge on the ob-
servable random vector y and/or the random vector x to be
estimated.

In this paper we focus on the recent solution to the prob-
lem of robust estimation under imperfect model knowledge:
the stochastic MV-PURE estimator [4]. This estimator has
been designed as an optimal fusion of the well-known reduced
rank Wiener filter [5-7], and the widely popular in wireless
communication community distortionless-constrained esti-
mator [1,2,8-10], which is recognized in the settings consid-
ered in [4] as the full-rank stochastic MV-PURE estimator.

The robustness of the stochastic MV-PURE estimator was
demonstrated in [4], where it was employed as a linear re-
ceiver in a multiple-input multiple-output (MIMO) wireless
communication system. In this simulation, we verified that
under the real-world settings of limited model knowledge
available at the receiver, the stochastic MV-PURE estimator
achieved lower mean square error (MSE) and symbol error
rate (SER) than the (MSE-optimal in the theoretical settings
of perfect model knowledge) Wiener filter [8, 11], as well as
than the aforementioned reduced rank Wiener filter and the
distortionless-constrained estimator. Moreover, we obtained
in [4] a transparent expression of the MSE of the stochastic
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MV-PURE estimator, which shows clearly when the MSE
of the stochastic MV-PURE estimator will be significantly
lower than that of its full-rank version, the distortionless-
constrained estimator.

The stochastic MV-PURE estimator builds on the pre-
viously introduced in [12, 13] minimum-variance pseudo-
unbiased reduced-rank estimator (MV-PURE), developed for
the deterministic estimation in the linear regression model.
The results obtained in [12, 13] not only define conditions,
under which the (deterministic) MV-PURE estimator should
be optimally used, but also show that this estimator encom-
passes previously known reduced-rank estimators developed
in the deterministic framework as its special cases. There-
fore, the results of [12, 13] achieve clear positioning of the
MV-PURE estimator among the reduced-rank estimators.

It is the goal of this paper to provide a similar characteri-
zation of the stochastic MV-PURE estimator. More precisely,
we will validate by theoretical results, that the stochastic MV-
PURE estimator can be used to the greatest effect in the ill-
conditioned, highly noisy situations. Interestingly enough, we
will show that precisely in such conditions, the reduced rank
Wiener filter is very close to the (full-rank) Wiener filter, and
hence cannot provide greater robustness than its full-rank ver-
sion, if only imperfect model knowledge is available. In par-
ticular, the theoretical results presented in this paper naturally
agree with the numerical simulations provided in [4], and give
valuable insight into properties of the stochastic MV-PURE
estimator. Moreover, we present further numerical simula-
tions, which also confirm in practice the theoretical results
presented.

Unless otherwise stated, all singular value decomposi-
tions (SVDs) [14] have singular values organized in nonin-
creasing order. The singular values are always denoted by
the same letter (in lowercase) as the matrix containing them.
Moreover, by SVD(X) = UXV?! we will mean that UXV*
is a SVD of X, and by rk(X) = r we will mean that X has
rank 7.

Due to lack of space, all proofs are omitted.
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2. PRELIMINARIES

2.1. Estimation in linear stochastic model

In this paper we consider the linear stochastic model of the
form:
y=Hx+n, (1)

where H € R™ ™ is a known matrix of rank m, and y €
R™ x € R™, n € R™ are random vectors. It is assumed that x
and n are uncorrelated, Ry, = 0, and that Ry > 0, R, > 0 are
known positive definite covariance matrices. Note that from
our assumptions Ry = (HRxH'+ Ry) > 0 and Ryy = RyH'
are available, with rk(Ryy) = m.

It can be easily verified that any two random vectors
x € R™y € R", for which Ry, Ry, Ry are known, where
rk(Ryx) = m, and for which the joint covariance matrix
is positive definite, can be cast into model (1) by setting
H = RyR;'and n =y — Ry R 'x, see [4,8]. Therefore,
model (1) encompasses a huge variety of problems in com-
munications', control, signal processing, statistics, and many
other fields (see e.g. [8,11], which are excellent references on
this subject).

The problem considered is that of linear estimation of x
given y, under the mean square error criterion. Thus, we seek
to find a fixed matrix W € R™*" called here an estimator,
for which the estimate of x given by:

X =Wy, ()

is optimal with respect to a certain measure related to the
mean square error of X:

JW) =tr [E[X—x)X-x)!] =
tr[WRyW'] — 2tr[W Ryx] + tr[Ry].  (3)

2.2. Known linear estimators

The well-known unique solution to the problem of minimiz-
ing (3) is the linear minimum mean square error estimator, de-
noted MMSE (often called the Wiener filter), given by [8,11]:

RyR;' = RRH'(HR\H' + Ry)™". (4

Similarly, the reduced rank (Wiener) MMSE filter [5-7],
denoted RR-MMSE, minimizes the MSE among reduced-
rank estimators:

Wrmse =

{ minimize J(W,) )

subjectto W, € A"*",
where X™*" = {W,. € R™*" : rk(W,.) < r} is the set of

rank-constrained matrices in R™*". Problem (5) produces as
a solution:

Wir mmse = VeViWamse, (6)

1/2HR ) = USV, with V = (vy, ...
vy) forr < m.

where SV D(Ry
and V. = (vq,..

, Um)

'In particular, in wireless communications employing modern techniques
such as CDMA, MIMO, OFDM [1-3].
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Another estimator, which is also the solution of a con-
strained MSE minimization, achieves perfect reconstruction
of the target random vector in the noiseless case. More
precisely, the distortionless-constrained estimator, denoted
C-MMSE, is a solution of the following linearly constrained
MSE minimization problem (see e.g. [8]):

J(W)

WH =1, )

minimize
subject to

with the unique solution:

_ (R;1/2H)TR;1/2,

®)
where (Ril/ *H )T denotes the Moore-Penrose pseudoinverse
of (Ry*/?H) [14].

We-ymse = (H'RTH) " H' R

2.3. Stochastic MV-PURE estimator

The stochastic MV-PURE estimator, introduced in [4], op-
timally combines the reduced-rank (5) and distortionless-
constrained approaches (7), by achieving smallest distor-
tion among reduced-rank estimators.> More precisely, the
stochastic MV-PURE estimator is defined as a solution of the
following problem, for given rank constraint r < m:

minimize J(W,)
subjectto W, € ﬂ Pr, )
LeTJ
where
P;=arg min Wi H — Iy, 1%, ¢t €7, (10)
W, e

where J is the index set of all unitarily invariant norms (i.e.,
norms satisfying || UXV ||=|| X || for all orthogonal U €
R™>m V¢ R" ™ and all X € R™*", see [14]).

The following Theorem, cited from [4], provides a closed
algebraic form of the stochastic MV-PURE estimator.

Theorem 1 ( [4]) 1. Let us set rank constraint r < m and let
us set:
(11)

Moreover, let the symmetric matrix K be given with an eigen-
value decomposition EV D(K) = EAFE", with eigenvalues
organized in nondecreasing order:

-1

K= (H'R,'H)  —2R,.

01 <02 <00 <.
Then Wiry_pure € R™*™ is a solution to problem (9) if
and only if Wi _ pyrp 18 of the following form:

(12)

2See [4] for in-depth discussion of optimality of the proposed approach.
For further insight into the MV-PURE estimation, see the original papers
[12,13], where the deterministic version of the MV-PURE estimator was de-
veloped.

t
Wirv_pure = BrE;Wo_mmsE,




where Weo_pvse is of the form (8), and where E =
(e1y...,em)WithE, = (e1,...,e,) forr < m.Ifd, # 0,41,
the solution is unique. Moreover, we have:

IWirv _pure) = Z bi + trRyl. (13)
i=1

2. For no rank constraint imposed, i.e. when r = m, the
solution to problem (9) is uniquely given by Wi, pypp =
We_mmse- In particular, we have:

m

IWity —pure) = JWe-mmse) = Z 8; + tr[Ry].
i=1
(14)

Note that immediately from (13) and (14) we obtain that
IWirv_pure) < J(We-mmse) if and only if:

1=r+1

(15)

Moreover, we showed in [4], that in a common in sig-
nal processing case of Ry = I, (see e.g. [15]), upon setting

SVD(Ry'*H) = USV!, with gy > --- > &y, > 0 the
singular values of Ry Vi , we have forall r < m

(16)

where V. = (vi/o1,...,0m/0m) € R™*™ with V, =
(n1/01y ... 0 /o) € R™*" forr < m, and where Wasprs g
is of the form (4) for Ry = I,,,. If 0. # 0,41, the solution is
unique. Moreover, we showed in [4] that:

71t
Wiv_pure = ViViWunse,

JWirv _pure) = 20;2 —2r+m, (17)
i=1

and for r = m we have Wi, _ pyre = Wo—mmse with:

m

JWitv—pure) = JWe-mmsE) = Z:U[2 —m. (18)

=1

Note that from (17)-(18), we obtain immediately that:

IWe-mmse) =IWirv _pure) = Z ;2 +2(r—m).
i=r+1

(19)

3. WHY THE STOCHASTIC MV-PURE ESTIMATOR
EXCELS IN HIGHLY NOISY SITUATIONS?

In this section, we provide first the main theoretical results of
this paper.

Leté € Ry, where R is the set of nonnegative real num-
bers, and let us define:

Ry(6) := HRyH" + 6 Ry, (20)
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Then, we have:

Jim H'(Ry(8))™"H =0 € R™*™, (1)

The following Proposition holds.

Proposition 1 Let reduced rank Wiener filter W p_ s =

V. VIWurnmsE be givenas in (6), where SVD(R;1/2HRx) =
UV with V. = (v1,...,0m) and V.. = (v1,...,v,) for
r < m. Note that we obtain thus

EVD(RH'R;'HR,) = V(S'S)V"
Then, forallr = 1,...,m — 1, we have:

Vied || Wumse —Wrr_ymse 1<

Or41 0 0

(Vy/mm) | o o |l

(22)

where A\, (Ry) is the smallest singular value of Ry, and where
J is the index set of all unitarily invariant norms.

We consider now the common in signal processing case
of Ry = I,,,, and we focus on the behaviour of the estimators
under consideration in highly noisy situations.

We note first that as ¢ increases, all eigenvalues of Ry (9)

(20) grow unboundedly, thus in particular 1/4/A, (Ry) con-
verges to 0. Moreover, as ¢ increases, from (21) we obtain that
the matrix H tR; L H becomes severely ill-conditioned, with

its eigenvalues 02 > --- > 02, > 0 pulling toward 0.

Thus, from (19) we obtain immediately that in highly
noisy settings of large ¢, the stochastic MV-PURE estimator
achieves much better performance than the C-MMSE esti-
mator, since the term » . 110 % in (19) may be extremely
large.

It is thus very interesting to note that precisely in such
highly noisy settings, from Proposition 1 we conclude that as
0 increases, the reduced rank Wiener filter W5 n_ /1795 con-
verges to the Wiener filter W5k, for all rank constraints
r < m. Therefore, the reduced rank Wiener filter does not
provide gain in performance over the full-rank Wiener filter
in highly noisy situations.

We conclude therefore that in highly noisy situations, the
stochastic MV-PURE estimator achieves huge gain in perfor-
mance over the C-MMSE estimator, and that the RR-MMSE
estimator provides very similar performance to the MMSE
estimator.

4. NUMERICAL EXAMPLE

In a numerical example provided in [4], the linear stochastic
model (1) represented a MIMO wireless communication sys-
tem, where we considered m = 8 and n = 8 transmit and re-
ceive antennas, respectively. Thus, to check the performance

3Note that, with our usual notation, we have SVD(Ry_ 1/ 2y ) =
ULVt = EVD(HtRylH) =V(ZtD)Vvt.



of the stochastic MV-PURE estimator in a different settings,
we chose a much larger m = 100,n = 200 system in the
current simulations, where we illustrate the theoretical results
provided in section 3. The entries of H are realizations of iid.
zero-mean Gaussians with unity variance, and the resulting
H is a well-conditioned matrix with singular values approx-
imately equal to 23.39,22.76,...,4.86,4.47. Similarly, the
entries of the input random vector x were iid. Gaussians with
unity variance, and we considered ) = 400 realizations of x.
We assumed correlated Gaussian noise, with covariance ma-
trix 0 Ry > 0, where 6 > 0. The SNR was defined as:

In the simulations depicted in Fig.1, we assumed that
the matrix H is available, but that the noise covariance ma-
trix Ry, is not. Thus, in order to construct the estimators
under consideration, the covariance matrix R, was approx-
imated in their definitions using its finite sample estimate

Ry ~ Ry = % Zqul ¥,Y,» Where Q@ = 400 is the length of
the data transmitted. The rank of the stochastic MV-PURE
estimator was chosen in order to minimize (17)-(18), and we
used the form of the stochastic MV-PURE estimator given in
(16). Moreover, since we are not aware of a similarly simple
rank-selection criterion for the RR-MMSE estimator, we al-
ways used the same rank for both the stochastic MV-PURE
and RR-MMSE estimators.

By evaluating the performance of the estimators under
consideration, Fig. 1 demonstrates that the theoretical results
of section 3 are applicable also for the case, where the co-
variance matrix Ry is replaced by its finite sample estimate.
Indeed, the discussion presented in section 3 provides full ex-
planation of the results shown in Fig. 1.
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Fig. 1. Performance of MMSE, RR-MMSE, C-MMSE and
stochastic MV-PURE estimators for the case of imperfectly
known covariance matrix Ry.
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