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ABSTRACT

The aim of this paper is to find a multiple window estima-
tor that is mean square error optimal for cepstrum estimation.
The estimator is compared with some known multiple win-
dow methods as well as with the parametric AR-estimator.
The results show that the new estimator has high performance,
especially for data with large spectral dynamics, and that it is
also robust against parameter choices. Simulated speech data
is used for the evaluation. It is also shown that the windows
of the estimator can be approximatedwith the sinusoidal mul-
tiple windows and that the weighting factors of the different
periodograms can be analytically computed.

Index Terms— cepstrum analysis, multiple windows,
multitaper, speech analysis

1. INTRODUCTION

Speech analysis is important in coding, classification as well
as in other applications. To estimate relevant parameters of
speech, one approach is the cepstrum related methods where
mostly the LPCC (linear prediction cepstral coefficients) and
MFCC (mel-frequency cepstral coefficients) are used to ex-
tract features for further analysis and classification.
Cepstrum methods based on robust spectrum analysis

techniques, e.g., multiple windows could be applied to
achieve higher performance. The Thomson multiple win-
dow method, [1], outperforms the Welch method in terms of
leakage, resolution and variance. It has also been applied to
speech analysis, [2]. For highly varying spectra, however,
which often is the case for speech, the performance of the
Thomson method degrades due to cross-correlation between
subspectra, [3]. The sinusoid windows in [4] and the Peak
Matched multiple windows, [5], have better bias properties
for such spectra. Here we suggest a similar approach as the
one in [5] for a mean square error optimal cepstrum estimate.
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2. CEPSTRUMMODEL

A discrete-time symmetrical cepstrum can be defined as

rc(n) =

∫ 0.5

−0.5

log Sx(f)ei2πfndf, n = −N + 1 . . .N − 1,

(1)
where rc(−n) = rc(n) and Sx(f) is the even, real-valued
spectral density function for the real-valued stationary process
{x(n)}N−1

0 . The mean square error (MSE) of the cepstrum is
obtained as

N−1∑
n=−N+1

E[(r̂c(n)−rc(n))2] =

∫ 0.5

−0.5

E[(Ŝc(f)−Sc(f))2]df,

(2)
where

Sc(f) =

N−1∑
n=−N+1

rc(n)e−i2πfn, −0.5 < f ≤ 0.5.

It has been shown, e.g. in [1, 5], that a frequency local es-
timator is important in spectrum estimation. To estimate the
cepstrum, we need a frequency local estimator of the logarith-
mic spectrum which is given by,

max

∫ B/2

−B/2

|H(f)|2Sc(f)df, (3)

subject to
∫ 0.5

−0.5
Sz(f)|H(f)|2df = 1 where Sz(f) could be

defined as the penalty spectrum in [5].
We define a symmetrical cepstrum where theM :th coeffi-

cient (and the mirrored coefficient at −M ) are differing from
zero,

rM
c (n) = C1δ(n) + C2δ(n − M) + C2δ(n + M), (4)

for n = −N + 1 . . .N − 1. The zeroth coefficient is also
included although this coefficient is usually omitted in appli-
cations using the cepstrum. The Fourier transform is given
as,

SM
c (f) = C1 + 2C2 cos(2πfM), −0.5 < f ≤ 0.5. (5)
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The model cepstrum and corresponding logarithmic spectrum
of Eqs. (4,5) has two parameters C1 and C2 to be chosen.
The logarithmic spectrum shape which is a comb-spectrum
with the frequency-distance 1/M between the peaks should
be estimated. We use the shape of one such peak, (located at
f = 0), as the bandlimited model. The width of the peak is
1/M which naturally is chosen as the bandwidth B in the es-
timation procedure. The spectrum of Eq. (5), SM

c (f) should
be positive and close to zero at the frequency value 1/2M ,
i.e. SM

c (1/2M) = C1 − 2C2 = 0 giving C1 = 2C2. The
resulting model spectrum SM

B (f) with C1 = 1 and C2 = 0.5
is seen in Figure 1.
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Fig. 1. Example of the spectrum shape SM
c (f) (dotted line)

and the model spectrum SM
B (f) (solid line),M = 8.

The aim is to find the mean square error optimal estimator,
based on a multiple window approach, to this spectrum and
evaluate the performance for cepstrum estimation. The ap-
proach is similar to [5].

3. MULTIPLE WINDOW SPECTRUM ESTIMATION

The multiple window spectral estimator is defined as

Ŝx(f) =

K−1∑
k=0

αk

∣∣∣∣∣
N−1∑
n=0

x(n)hk(n)e−i2πf

∣∣∣∣∣
2

, −0.5 < f ≤ 0.5,

(6)
where the set hk = [hk(0) . . . hk(N − 1)]T is found as the
eigenvectors of the (generalized) eigenvalue problem

RM
B qk = λkRZqk, k = 0 . . .N − 1, (7)

which is the solution of Eq. (3). The (N × N) Toeplitz co-
variance matrix RM

B corresponds to SM
B (f) and λ0 ≥ λ1 ≥

. . . ≥ λN−1. The eigenvectors corresponding to theK largest
eigenvalues are used as windows, hk = qk, k = 0 . . . K−1.
The covariance matrixRZ could be chosen to grant low side-
lobe level to the estimate Ŝx(f), [5]. Without sidelobe sup-
pression RZ = I. The weighting factors should be chosen
for a mean square error optimal cepstrum and therefore also
for the logarithmic spectrum. The mean square error for each

frequency value f in Eq. (2),

E[(Ŝc(f) − Sc(f))2] = E[(log Ŝx(f) − log Sx(f))2] (8)

=
(
E[log Ŝx(f)] − log Sx(f)

)2

+ V
[
log Ŝx(f)

]

≈

(
log

E[Ŝx(f)]

Sx(f)

)2

+
V [Ŝx(f)]

E2[Ŝx(f)]

≈

(
E[Ŝx(f)] − Sx(f)

E[Ŝx(f)]

)2

+
V [Ŝx(f)]

E2[Ŝx(f)]

=
MSE

[
Ŝx(f)

]
E2[Ŝx(f)]

, (9)

assuming that Sx(f) ≈ E[Ŝx(f)]. This approximation shows
that the normalized mean square error of the spectral estima-
tor Ŝx(f) is a reasonable estimate for the mean square error
of the estimator Ŝc(f). In [6], choosing weighting factors as

αk =
λk∑K−1

k=0 λk

, k = 0 . . .K − 1, (10)

showed to give approximately a minimum normalized mean
square error estimate for the spectrum estimate. Therefore we
can choose the weighting factors according to Eq. (10). The
number of eigenvaluesK will depend on the parameterM as
K ≈ N/M .
Figure 2 shows an example of the resulting multiple win-

dows and weighting factors whenRZ = I. This estimator is
named Multiple Window Cepstral Estimator (MWCE). In
the analysis we also use the possibility to further suppress
sidelobes with G dB of the multiple windows windows using
the penalty matrix RZ defined in [5]. The estimator is then
calledMWCEG.

3.1. Approximated estimator

As this estimator is mean square error optimal only for a pro-
cess with cepstrum defined by Eq. (4), a number of different
eigenvalue problems need to be solved in an actual application
to find the best estimator. This is not a practical scenario. The
multiple window spectrum estimator can be computationally
effective only if the set of multiple windows are the same for
all values of M and we propose an approximation using the
sinusoidal windows, [4].
If we assume that theK eigenvalues λk, k = 0 . . . K − 1,

approximately are equal to the spectrum values at frequency
f = k/2N , an analytic approximation of the weighting fac-
tors is proposed as

αa
k =

cos(2πkM/2N) + 1∑K−1
k=0 cos(2πkM/2N) + 1

, k = 0 . . .K−1, (11)
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which also is plotted as the dashed line in Figure 2b). The
approximation is shown to be sufficiently close for all values
ofM .
The weighted square error is

etot =

K−1∑
k=0

αa
k

N−1∑
n=0

|hk(n) − hs
k(n)|2, (12)

where hs
k(n) is the k:th sinusoidal window. An evaluation

is performed for N = 128 and for values of M = 1 . . . 32.
The error is plotted in Figure 2c) where it can be seen that
the approximation error is very small for low values ofM but
significantly larger for higher M . This is mainly due to the
mismatch between the windows as the analytic approximation
of the weighting factors are fairly good for all values ofM .
However, using the sinusoidal windows, for a specific

process realization of length N , the windowed periodograms
only need to be computed once. Then, using the analytic
formula of Eq. (11), the weighting of the periodograms for
the mean square error optimal estimate valued for each M ,
is done. In this case no solution of eigenvalue problems
are needed. We name this estimator the Sinusoidal Window
Cepstral Estimator, (SWCE).
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Fig. 2. Example of the eigenvectors and eigenvalues that are
used as multiple windows and weighting factors for the spec-
trum estimation: a) The four first eigenvectors forM = 8; b)
The eigenvalues, k = 0 . . .K−1, (solid line) and the analytic
approximation (dashed line),M = 8; c) The weighted square
error of the approximation for differentM .

4. EVALUATION

The proposed estimator is evaluated and compared with other
well-known algorithms. We compare with AR-estimation
(ARM ), equally weighted sinusoidal multiple windows,
(SIN MW ) and the Thomsonmultiple windows (TH MW ).
In all simulations N = 128 and the number of realizations
are 500.
The performance is evaluated for processes with logarith-

mic spectra SM
c (f) for values of M = 1 . . . 32. The re-

alizations of the processes are simulated from the spectrum

SM
x (f) = eSM

c
(f). For each value of M , optimal choices

for all algorithms in the evaluation are made. For the AR-
estimator, we choose the order to be equal to M , which is a
natural choice for estimation of a process that has a spectrum
with M equally spaced peaks. The choice for the Thomson
multiple windows are based on the assumption that the band-
width of the peak of the combspectrum is 1/M and therefore
B = 1/M and the number of windows is chosen as an integer
close to BN − 2 = N/M − 2, [1]. The number of sinusoidal
multiple windows is also chosen according to the same rule.
The mean square error of the cepstrum estimate is computed
as

MSEc =
N∑

n=1

E[(r̂M
c (n) − rM

c (n))2], (13)

for the different algorithms. Note that the cepstrum coeffi-
cient at n = 0 is excluded in the analysis. The reason is that
the zeroth coefficient is usually omitted in cepstrum applica-
tions, e.g., speech analysis.
Figure 3 shows the results. The solid line is theMWCE

and the dash-dotted line the SWCE which as expected give
a slightly higher MSE than the optimal method. The dotted
line and the dashed line are the results from the SIN MW
and the TH MW respectively. The best result for all M is,
as expected, given from the ARM , (crossed line).
However, a comb-spectrum with all frequency peaks at

the same level is not very close to a real world application.
We instead simulate processes from a symmetrical spectrum
which decreases according to,

SM
x (f) = eSM

c
(f) · e−fd, , 0 ≤ f ≤ 0.5, (14)

where d = 0.2. The results from the evaluation for different
values of M are depicted in Figure 4. The MWCE (solid
line) gives about the same performance as ARM (crossed
line). A smaller MSE is given from SWCE (dash-dotted
line), the SIN MW (dotted line) and the TH MW (dashed
line). The smallest MSE, at least for processes of lower M ,
is given from the MWCE30 (stars) where the sidelobe sup-
pression of 30 dB combinedwith the optimal weighting of the
periodograms give a better result than the other methods.

5. SPEECH ANALYSIS

To evaluate the performance for speech data, different AR-
models are estimated from sounds of the syllables ’A’ and
’L’ of sampled data, Fs = 11 kHz. The choices of the or-
ders of the AR-models are made from the final prediction
error. Simulated data are extracted from the different mod-
els. The number of realizations are 500 and the data length
is N = 128. We evaluate using the same set of algorithms
and parameter choices as in Section 4. The results show that
the ARM performs well for the lower order models AR8 for
’A’, Figure 5b) (crossed line, minimum for M = 8) and
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Fig. 3. MSEc of the model cepstrum; MWCE (solid
line), SWCE (dash-dotted line), TH MW (dashed line),
SIN MW (dotted line), ARM (crossed line)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

M

MS
E c

Mean square error of the cepstrum estimate

Fig. 4. MSEc of exponentially decreasing spectrum;
MWCE (solid line), SWCE (dash-dotted line),MWCE30

(stars), TH MW (dashed line), SIN MW (dotted line),
ARM (crossed line)

AR11 for ’L’, Figure 5d) (minimum for M = 11). How-
ever, the AR-model does not give the smallest MSE in any of
the tested cases. The best results are given from the SWCE
(dash-dotted line) which seems to give the smallest error for
15 ≤ M ≤ 20 for these data. It is closely followed by the
MWCE30 (stars) with minimum for 10 ≤ M ≤ 15. The
SIN MW and the TH MW are more sensitive to the choice
ofM but with a proper choice these methods also give small
MSE. The MWCE gives a significantly larger error which
certainly is explained by the bad sidelobe suppression of the
original windows, see the large jumps at the start and end of
the windows, Figure 2a).

6. CONCLUSIONS

Multiple windows for mean square error optimal cepstrum es-
timation are proposed where windows and weighting factors
are estimated from a comb-spectrum model. An approxima-
tion using the sinusoidal multiple windows and an analytical
expression for the weighting factors are also suggested and
evaluated. The new estimator is shown to give a smaller mean
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Fig. 5. MSEc of different AR-models of the sounds ’A’
and ’L’; MWCE (solid line), SWCE (dash-dotted line),
MWCE30 (stars), TH MW (dashed line), SIN MW (dot-
ted line), ARM (crossed line)

square error than AR-estimators and other multiple window
estimators as the Thomson multiple windows and the sinu-
soidal multiple windows.
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