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ABSTRACT

When an autoregressive (AR) process is observed through
a sparse multipath environment, its AR parameters may be
estimated by searching for a symmetric Finite Impulse Re-
sponse (FIR) filter, which, when convolved with the ob-
served signal’s autocorrelation sequence, yields the sparsest
output. The zeros of that filter would then correspond to
the poles of the AR process. When the �0-norm of the out-
put is used as a measure of its sparsity, consistency of the
resulting estimate (under some simple conditions) is read-
ily obtained. However, due to problematic aspects of �0-
norm minimization, it is often more convenient to resort
to �1-norm minimization. A question of major interest in
this context is whether (and if so, under what conditions)
consistency of the resulting estimate is maintained. By an-
alyzing the perturbations of the �1-norm about the desired
solution, we derive (and illustrate) specific conditions for
consistency. We show that when the multipath reflections
are sufficiently sparse, consistency is guaranteed for a very
wide range of AR parameters and reflection gains.

Index Terms—multipath, sparsity, �1 minimization, de-
convolution, consistency.

1. INTRODUCTION

Exploitation of sparsity-related properties in various signal-
processing contexts has gained considerable attention in re-
cent years. The most natural measure of sparsity of a dis-
crete time-series (or vector) is its �0-norm, which counts the
number of nonzero elements. Unfortunately, however, the
�0-norm is rather difficult to work with, due to its severe dis-
continuity and non-convexity. An appealing alternative to
the �0-norm is the �1-norm (sum of absolute values), which
on one hand enjoys continuity and convexity properties, but
on the other hand might be somewhat less truthful to the
notion of sparsity. Therefore, while minimization of the
�0-norm (in various contexts) can often be shown to yield
a desired solution, it is not always clear whether substitu-

tion thereof by the more convenient �1-norm minimization
is still guaranteed to yield the same desired solution.
It is therefore of interest to try to identify (in the re-

spective contexts) conditions under which the �1 alterna-
tive can be used without compromising the ability to at-
tain the sparsest solution. For example, in the context of
over-complete dictionaries (closely related to compressed
sensing), Donoho et al. (e.g.,[1, 2]) have shown that under
certain conditions the �1 minimization can yield the same
desired results as �0 minimization.
In this paper we consider the spectral estimation of an

all-poles autoregressive (AR) process observed through a
sparse multipath environment. A possible strategy for esti-
mating the AR parameters of the signal of interest (SOI) can
be to find a Finite Impulse Response (FIR) filter (of proper
length), which, when convolved with the estimated corre-
lation sequence of the observed signal, yields the sparsest
output sequence. Then, the zeros of this FIR filter can
serve as estimates of the SOI’s poles, whereas the result-
ing sparse signal (output of the convolution) is associated
with the (sparse) autocorrelation sequence of the multipath
reflections profile. Such an approach was recently proposed
in [3] (under tha acronym SPARE - SParsity-based AR Es-
timation), where it was also shown that under some nearly
trivial conditions, minimization of the �0-norm of that con-
volution can yield a consistent estimate (namely, recovers
the exact poles of the SOI if the exact autocorrelation of the
observed signal is used). However, as mentioned above, �0-
norm minimization is nearly unfeasible in practice, and it
is therefore substituted (in [3]) with �1-norm minimization.
Although the �1 minimization was shown (in simulations) to
perform well (outperforming competing estimators), condi-
tions for its consistency remained an open question.
To explore conditions for consistency of the �1-norm

minimization in this problem, we shall analyze the �1-norm
of the convolution result in the vicinity of the desired solu-
tion. We shall show that small-errors in one of the estimated
poles inflict two different error-terms on the �1-norm, and
that the balance between these two terms implies conditions
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for the consistency of the resulting estimate.
In the following section we shall specify the problem

formulation and briefly outline the SPARE approach of [3].
In Section 3, which contains our main result, we shall ana-
lyze the relation between errors in the estimated poles and
perturbations in the �1-norm, and identify (and illustrate)
the conditions for consistency.

2. PROBLEM FORMULATION

Let s[n] denote the SOI, an AR process of known order P ,

s[n] = −
P∑

k=1

aks[n − k] + w[n] , ∀n (1)

where w[n] is a zero-mean, unit-variance white process
(“driving-noise”), and the parameters a1, a2, ..., aP are the
unknown AR parameters, such that the polynomial A(z) =
1+a1z

−1 +a2z
−2 + · · ·+aP z−P has all its P roots inside

the unit-circle (in the Z-plane).
Assume now that s[n] is received through some sparse,

isolated-multipaths environment. The received signal x[n]
can be modeled as

x[n] =
M∑

m=0

gms[n − τm] (2)

where M denotes the number of multipath reflections (in
addition to the direct, main path), {gm}M

m=0 denote the un-
known path-loss coefficients and {τm}M

m=0 denote the re-
spective unknown propagation delays1. Note that this model
assumes that all multipath delays are integer multiples of
the sampling period (hence all τm are integers). This is cer-
tainly a simplifying assumption. However, even if the true
delays are fractional, this model can still hold, but then each
single reflection would give rise to several (actually an infi-
nite number of) delays and “interpolation” coefficients, and
the sparsity of the reflections profile would be somewhat
weakened. And yet, it was demonstrated in [3] that SPARE
works well even in the presence of fractional delays.
It is desired to estimate the AR coefficients a1, . . . , aP

(alternatively, the poles of A(z)) from the observed signal
x[n], n = 1, . . . , N .
Now let Rss[�]

�
= E[s[n + �]s[n]] denote the autocorre-

lation of s[n]. The Z-transform of Rss[�] is the spectrum

Sss(z)
�
=

1
A(z)A(1/z)

. (3)

LetH(z)
�
= A(z)A(1/z) denote a symmetric Finite Im-

pulse Response (FIR) filter (of length 2P + 1), whose im-
pulse response is denoted h[�]. Obviously, the convolution

1Without loss of generality we can assume that 0 = τ0 < τ1 < · · · <
τM .

of Rss[�] with h[�] results in an impulse (Kronecker’s delta
function, δ[�]). Now consider the autocorrelation Rxx[�] of
the observed signal x[n]. Likewise, the convolution of the
same h[�] with Rxx[�] would result in some symmetric se-
quence β[�], whoseZ-transform is given byB(z)B∗(1/z∗),
where B(z) is the Z-transform of the set of coefficients
{b�}τM

�=0, related to the multipath coefficients and delays via

b� =

{
gm if ∃ m | τm = �

0 otherwise.
(4)

In other words, the result of the convolution of h[�]
with the (true) autocorrelation of the observed signal x[n]
is the autocorrelation of the multipath channel’s impulse-
response, which, under the (often realistic) assumption of a
sparse multipath profile, is supposed to be sparse as well.
It was therefore proposed in [3] to search for the sym-

metric FIR filter ĥ[�] of length 2P + 1, whose convolution
with the (estimated) autocorrelation R̂xx[�] of the observed
signal yields the sparsest result. Under asymptotic condi-
tions (infinite observation time, weak ergodicity of the SOI),
R̂xx[�] can be assumed to coincide with the true Rxx[�].
Then, it was shown in [3] that if the �0-norm of the con-
volution result is used as a measure of its sparsity, then un-
der certain conditions on the minimum delay-difference be-
tween the multipath reflections, the zeros of the minimizing
filter ĥ[�] must coincide with the poles of the SOI (hence a
consistent estimate2 thereof can be extracted from the min-
imizing filter ĥ[�]).
However, as mentioned earlier, the �0-norm is very dif-

ficult to minimize, due to its severe discontinuity and non-
convexity. Thus, the SPARE algorithm minimizes the �1-
norm of the convolution, rather than its �0-norm. To evade a
trivial solution, a linear scaling constraint on the coefficients
of ĥ[�] is incorporated. The resulting linearly-constrained
convex minimization problem admits a convenient, unique
solution (e.g., using [4] or standard linear programming),
which was shown to perform well in simulations. And yet,
it remained unclear whether (or when) this alternative mea-
sure of sparsity indeed provides a consistent estimate.
In the following section we shall analyze the sensitivity

of the �1-norm to deviations from the true solution, and es-
tablish conditions for consistency of the resulting estimate.
However, we shall substitute the linear scaling constraint
with a somewhat different (nonlinear) constraint. Thus,
strictly speaking, the consistency proof will not apply di-
rectly to the original version of the SPARE algorithm in [3],
but would still provide insight as to conditions under which
an �1-based objective function can (or cannot) yield a con-
sistent estimate in the context of our problem.

2To be precise, in order to properly guarantee consistency, a threshold-
modified variant of the �0-norm has to be used, such that the threshold
value vanishes asymptotically with the observation lengthN .
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3. CONDITIONS FOR CONSISTENCY OF THE
�1-BASED ESTIMATE

As mentioned above, our scaling constraint (on the sym-
metric FIR filter ĥ[�]) in this analysis will not be linear. We
constrain the Z-transform Ĥ(z) of ĥ[�] to take the form

Ĥ(z) = D̂(z)D̂(1/z) , D̂(z) =
P∏

k=1

(1 − d̂kz−1) (5)

meaning that the multiplicative components D̂(z) and
D̂(1/z) of Ĥ(z) are both monic polynomials. Note that
this is still merely a scaling constraint, since any symmetric
FIR filter (of length 2P + 1) can be represented in such a
form up to some scaling.
For simplicity, let us assume first that the SOI is an

AR(1) process, namely that A(z) = 1 − az−1. Under
the above scaling constraint, D̂(z) would simply be given
by D̂(z) = 1 − d̂z−1 (with some d̂), so that Ĥ(z) =
−d̂z + (1 + d̂2) − d̂z−1. Now, observe the following re-
lation, which can be easily verified:

Cs(z)
�
=

(1 − d̂z−1)(1 − d̂z)
(1 − az−1)(1 − az)

= U+
V

(1 − az−1)(1 − az)
,

(6)
where U = d̂/a and V = (d̂−a)(d̂− 1

a ). Obviously, Cs(z)
is the Z-transform of the convolution between the FIR filter
ĥ[�] and the SOI’s true correlationRss[�]. Assume now, that
d̂ is in the vicinity of the true solution, namely d̂ = a + ε,
where ε is infinitely small. Substituting into U and V and
ignoring the term which is quadratic in ε, we obtain that

Cs(z) ≈ 1 + ε
a − ε

a · 1 − a2

(1 − az−1)(1 − az)
. (7)

Recognizing that the inverse Z-transform of the term (1 −
a2)/((1−az−1)(1−az)) is the sequence a|�|, we conclude
that the inverse Z-transform of Cs(z) is given by

cs[�] ≈
{

1 � = 0
− ε

aa|�| � �= 0
(8)

(and, of course, as expected, cs[�] = δ[�] when ε = 0). In
the presence of multipath reflections, the observations’ au-
tocorrelation Rxx[�] will differ from Rss[�], and its convo-
lution with ĥ[�] will not be given by cs[�]. The key question
here is whether or not this convolution will still obtain its
minimal �1-norm when d̂ = a (namely, when ε = 0).
Again, for simplicity of the exposition we temporarily

employ a simplifying assumption of a singlemultipath com-
ponent with arbitrary gain g and (integer, positive) delay τ .
Consequently, we have

Rxx[�] = (1+g2)·Rss[�]+g·Rss[�−τ ]+g·Rss[�+τ ]. (9)

The convolution between ĥ[�] and Rxx[�], denoted cx[�], is
therefore similarly given by

cx[�] = (1 + g2) · cs[�] + g · cs[�− τ ] + g · cs[� + τ ]. (10)

Combining (8) and (10), we obtain

cx[�] ≈

⎧⎪⎨
⎪⎩

1 + g2 − ε
a · 2gaτ � = 0

g − ε
a · ((1 + g2)aτ + ga2τ ) � = ±τ

− ε
a · ((1 + g2)a|�| + ga|�−τ | + ga|�+τ |) o.w.

(11)
We now wish to determine whether or not the �1-norm

of cs[�] obtains a minimum (with respect to ε) at ε = 0. To
this end, we denote the �1-norm as f(ε), and observe that
f(ε) is composed of three terms:

f(ε) ≈ α · |ε| + β · ε + γ, (12)

where α is obtained by summing the absolute values of cx[�]
over all � �= 0,±τ ,

α =
2
|a|

∞∑
�=1
��=τ

|(1 + g2)a|�| + ga|�−τ | + ga|�+τ ||, (13)

and β and γ are obtained from the absolute values of the
terms cx[0] and cx[±τ ]:

β = −2gaτ−1 − sign(g)aτ−1(1 + g2 − gaτ ), (14)

γ = 1 + g2 + 2|g|. (15)

Having obtained the general form of f(ε) (recall that
the approximation becomes exact as ε tends to zero), we ob-
serve that f(ε)would take a (possibly local) minimum value
(of γ) at ε = 0 if and only if |β| < α. In Figs.1a,b we show
typical shapes of f(ε) vs. ε, compared to the approximation
(12). Also, the �2-norm of cs[�] is shown for reference (il-
lustrating that the consistency is a particular property of the
�1-norm). In Fig.1a we show a case in which |β| < α, such
that f(ε) indeed obtains a minimum at ε = 0, whereas in
Fig.1b we show a case in which |β| > α, such that ε = 0 is
no longer a minimum. Note that in both cases the �2-norm
does not take a minimum at ε = 0, meaning that minimiza-
tion thereof would not yield a consistent estimate.
Given the expressions3 (13), (14) for α and β (resp.), it

is possible to determine (as a function of a, g and τ ) whether
or not the �1-norm minimization (with the specified scal-
ing constraint) would yield a consistent estimate in a cer-
tain setup. In fact, it is possible to identify “consistency-
regions” in the a − g plane for each τ , as we illustrate in
Fig.2. As could be expected, when the multipath reflection

3The expression (13) for α can be further simplified by obtaining an
explicit expression for the infinite part of the summation. We omit the
explicit expressions due to lack of space.
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Figure 1: The �1-norm and its approximation (12) vs. the deviation ε of
d̂ from a. Fig.1a (left) depicts the case a = 0.6, g = 0.4, τ = 3, such that
|β| < α, and the (consistent) minimum is obtained at ε = 0. Fig.1b (right)
depicts a case in which |β| > α, causing inconsistency. The �2-norm is
shown for reference.

is very close (τ = 1, 2), the sparsity of the multipath profile
is “questionable”, and the resulting estimate is not consis-
tent in a significant part of the a − g plane. However, as
the reflection gets farther away, the regions of inconsistency
become significantly smaller and practically negligible.
We now turn to relax the simplifying assumptions made

earlier. We first address the assumption of a single multi-
path: Obviously, the same derivation can be extended to the
case of several multipath reflections. The only modification
would be the addition of “exception” cases in the expression
(10) for cx[�]. Then, the expressions for α, β and γ would
change accordingly, as β and γ would encompass all of the
“exception” cases, and α would be left with the summation
over all other values of �. While the expressions would be-
comemore cumbersome, they would all still depend directly
on a, on all g-s and on all τ -s, so it would still be easy to
predict, in any given scenario, whether or not the �1-based
estimation would be consistent, simply based on the relation
between |β| and α.
Regarding the assumption of an AR(1) SOI: assume first

thatA(z) has several poles, but that all poles are real-valued.
Consider the �1-norm of the convolution between Rxx[�]
and ĥ[�], as ĥ[�] is perturbed about its desired value h[�].
Since ĥ[�] is constrained by (5), we may equivalently con-
sider perturbation of any one of the zeros of D̂(z), say d̂k

(for some k ≤ P ). Obviously, after such perturbation, the
convolution result will be exactly the same as if the SOI
were an AR(1) process with parameter ak, and ĥ[�] were a
length-3 (2·1+1) FIR with d̂ = ak+εk (εk denoting the per-
turbation in d̂k). Thus, all of our results above would hold,
simply by substituting a with ak. If the consistency condi-
tion |β| < α is satisfied for each ak, k = 1, . . . , P , then
the true solution is guaranteed to be a minimum of the �1-
norm - at least with respect to each dk separately (note that
in general this does not necessarily mean that it is minimum
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Figure 2: Regions of inconsistency in the a − g plane for four values
of τ . The colored regions indicate values of a and g for which β| > α,
rendering the �1-norm inconsistent. As τ increases (and the multipath pro-
file becomes more truly sparse), these regions become significantly smaller
and consistency prevails nearly everywhere. The ’+’-s indicate the points
corresponding to Figs.1a,b
with respect to all dk-s together). When A(z) has complex-
valued poles (in conjugate pairs), the expressions (13), (14)
cannot be readily used, since each poles-pair has to be per-
turbed together (the FIR must be real-valued). Thus, the
expression for cs[�] becomes more complicated (depend-
ing on a complex-valued ε), and is omitted due to lack of
space. Nevertheless, similar conditions for consistency in
such cases can be obtained along the same guidelines.

4. CONCLUSION

We addressed the consistency of a sparsity-based approach
for AR parameters estimation in a sparse multipath envi-
ronment, which is based on �1-norm minimization of the
convolution between the observed correlation and a scale-
constrained FIR filter. Analyzing the sensitivity of the �1-
norm to perturbations in the filter, we identified a condition
for its minimum to be obtained at zero perturbation (namely,
at the desired solution). Thus, asymptotically, as the obser-
vation length tends to infinity, such that the estimated corre-
lation approaches the true correlation, the minimizing solu-
tion is obtained at the true value (provided that our consis-
tency conditions are satisfied).
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