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ABSTRACT

In this paper, we propose two approaches for combining geometric
information with ICA algorithm to solve permutation problem un-
der the scenario where a rough information about the direction of
the desired source is known. The first approach is a new blind ex-
traction algorithm with a soft quadratic geometric constraint. The
desired source is guaranteed to be conveyed to the output with little
distortion by the quadratic constraint and the negentropy maximiza-
tion criterion is used to ensure that the other sources get suppressed
at the output. The second approach employs a quadratic geometric
test as a post-processing step to pickup the desired source after ICA
processing. An advantage of the proposed two approaches is that
they do not require accurate knowledge of the number of sources in
the mixtures to recover the desired source, in contrast, other geo-
metric ICA approaches usually fail if the number of sources is not
known accurately.

Index Terms— Independent component analysis, geometric in-
formation, direction of arrival, quadratic constraint

1. INTRODUCTION

Independent component analysis (ICA) is a statistical method for
extracting independent components from a group of mixtures [1].
For convolutive mixtures, frequency domain ICA approach is mostly
used since it simplifies the problem into instantaneous mixing prob-
lem in every frequency bin and can be solved therein by simple in-
stantaneous mixing ICA algorithms [2]. However the intrinsic scal-
ing and permutation ambiguities need to be addressed in applying
the frequency domain ICA approach.

ICA assumes no knowledge about the mixing process except the
independence between sources. However, sometimes extra informa-
tion is available and can be utilized to aid the ICA process. For
example, in microphone array speech processing, speech’s temporal
structure or geometric information with the array may be employed
to solve the permutation problem. Many recent works have been
developed to combine ICA with geometric information to solve the
permutation problem (see [4, 5, 6, 7] and refs therein). In [4, 5],
beam pattern of the ICA processor is utilized to figure out the direc-
tions of the sources to solve the permutation problem. These meth-
ods become too complicated and are not robust when the number of
sources exceed 2. Parra and Alvino proposed the geometrically con-
strained (or initialized) ICA algorithm [6], but accurate source num-
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ber is required and correct permutation is not guaranteed. Knaak and
Araki proposed an ICA algorithm with a hard linear geometric con-
straint [7]. However, accurate source number is mandatory for the
algorithm to perform properly.

In microphone array speech processing, the geometry of the ar-
ray and rough information about the direction of the desired signal
may be known a priori, for instance, the direction of the desired sig-
nal may be assumed to be the broadside direction for a linear array,
or be acquired by some direction of arrival (DOA) estimation algo-
rithms [3]. In this paper, We propose two approaches for combining
DOA information of the desired source with ICA algorithm to solve
permutation problem. The first approach is a new blind extraction al-
gorithm with a soft quadratic geometric constraint. Given a rough es-
timate of the direction of the desired source, the proposed algorithm
will extract the desired source from the mixed signals. The quadratic
constraint restricts the weighted square error between the desired and
actual response of the processor over a small spatial uncertainty re-
gion chosen to deal with look direction uncertainty. Thereby the
desired source is guaranteed to be conveyed to the output with little
distortion and the negentropy maximization criterion is used to en-
sure that the other sources get suppressed at the output. This method
solves the permutation problem in the frequency domain ICA ap-
proach since the desired signal is extracted consistently across all
the frequency bins. The second approach employs a quadratic ge-
ometric test as a post-processing step to pickup the desired source
after ICA processing. In every frequency bin, the ICA algorithm
separates instantaneously mixed source signals, then the quadratic
geometric test will pick up the desired source. An advantage of the
proposed two approaches is that they do not require accurate knowl-
edge of the number of sources in the mixtures to recover the desired
source, in contrast, other geometric ICA approaches usually fail if
the number of sources is not known accurately.

In Section 2, we describe the signal model, the complex FastICA
algorithm and the linear constrained ICA algorithm. Section 3 dis-
cusses the proposed two approaches combining ICA with geometric
information. The simulation results and discussion are presented in
Section 4.

2. BACKGROUND

2.1. Complex FastICA

Hyvarinen and Oja proposed a fast fixed point algorithm (FastICA)
for solving the real variable instantaneous mixing ICA problem [1].
FastICA maximizes the negentropy of the output yi, i = 1..N, sub-
ject to the constraints that all the yi, i = 1..N are uncorrelated and
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have unit variances. Bingham and Hyvarinen extended it to com-
plex variables and developed a complex FastICA algorithm [8]. The
mathematical problem to be solved is,

min
wj ,j=1..N

N∑
j=1

JG(wj), s.t. E{(wH
k x)(wH

j x)∗} = δjk

where δjk = 1 for j = k and 0 otherwise. wj is M-dimensional
complex weight vector. x is the observation vector. The contrast
function is defined as,

JG(w) = E{G(|wH
x|2)} (1)

where G : R
+ ∪ {0} → R is a smooth even function. For example,

G(z) = log(a + z) is a good choice for speech separation task.

2.2. ICA with a linear geometric constraint

Knaak, Araki and Makino studied the similarities between adaptive
beamforming and ICA, and proposed a geometrically constrained
ICA algorithm (CICA) [7]. CICA combined a linear look direction
constraint with the ICA criterion.

arg min
w

E{G(|wH
x|2)} ≡ arg min

t

E{G(|tH
z|2)} (2a)

s.t. w
H
a = t

H
V a = 1. (2b)

wherewH = t
HV ,w is the weight vector for original observed data

x, and t is the weight vector for the sphered data z. V is the sphering
matrix determined by principle component analysis (PCA). a is the
estimated steering vector for the desired source. The algorithm is
initialized with the MVDR beamformer [3] on the sphered data,

t0 = V a (3)

3. COMBINE ICA WITH GEOMETRIC INFORMATION

3.1. ICA with quadratic geometric constraint

One shortcoming of the CICA algorithm is that it requires accurate
knowledge of the number of the sources in the mixtures. Also the
performance of the CICA algorithm depends heavily on the initial-
ization of the weight vector. A careful chosen initialization weight
vector ensures the algorithm converge to the desired source. How-
ever, such initialization weight vector is available only when the
source number is accurately known and the PCA preprocessing is
properly done based on that.

Assuming a M sensor, N source system. When the PCA pre-
processing is performed based on accurate source number, we ef-
fectively have a mixing system with a square mixing matrix, i.e.
M ′ = N , where M ′ is the effective sensor number. As is known,
ICA is closely related to beamforming [4, 5, 7]. When all the orig-
inal sources have similar variances, the MVDR beamformer t0 (3)
on the sphered data is close to the optimum ICA solution because of
the limited free spatial dimensions. Thereby, the CICA is inclined
to converge to the right solution. However, when the PCA prepro-
cessing is performed based on an overestimated source number, we
are effectively working on a mixing system with more sensors than
sources, i.e. M ′ > N . In this case, there is enough free spatial
dimensions in the weight vector such that the MVDR beamformer
t0 (Eq.(3)) on the sphered data is far from the right solution (Here
we assume the estimated steering vector a is close to but not exactly
the true steering vector for the desired source since DOA error al-
ways exists in real applications). Thereby, the CICA algorithm may

not converge to the right solution and it may amplify an undesired
source and suppress the desired source. Furthermore, the CICA al-
gorithm fails when the PCA preprocessing is performed based on
underestimated source number. These drawbacks are confirmed in
the experiments. Another possibility is to initialize the CICA algo-
rithm with the Delay-and-Sum beamformer. However, experiments
show that this still can not ensure the CICA algorithm to converge to
the right solution consistently.

In this section, we propose a new ICA algorithm with a quadratic
geometric constraint which combines the geometric information of
the array with the ICA criterion. Instead of using a hard linear con-
straint as in CICA algorithm, here we propose to use a soft quadratic
constraint which can accommodate uncertainty in the look direc-
tion information. In [9], a quadratic constraint is used to ensure the
robustness of the adaptive beamformer in the look direction. The
quadratic constraint restricts the weighted square error between de-
sired and actual beam pattern of the beamformer over a small spatial
region chosen to deal with look direction uncertainty. This error item
can be written as,

e
2 =

∫ θ+Δθ

θ−Δθ

f(θ)
∣∣∣wH

a(θ, ω) − w
H
d a(θ, ω)

∣∣∣2 dθ

= (w − wd)
H

∫ θ+Δθ

θ−Δθ

f(θ)a(θ, ω)a(θ, ω)H
dθ(w − wd)

= (w − wd)
HΦ(w − wd),

with Φ =

∫ θ+Δθ

θ−Δθ

f(θ)a(θ, ω)a(θ, ω)H
dθ.

θ is the assumed look direction, Δθ is a measure of uncertainty in
the assumed look direction, f(θ) is a spatial weighting function, ω
is a fixed frequency and a(θ, ω) is the array steering vector. Φ is
a positive definite constraint matrix which can be calculated by ei-
ther mathematical integration or by numerical techniques. w is the
beamformer’s weight vector of interest. w

H
d a(θ, ω) is the desired

response in the direction θ, and it is expressed as the inner prod-
uct between a desired beamformer’s weight vector wd and steering
vector a(θ, ω) to simplify computation. Generally, Delay-and-Sum
beamformer is used as the desired beamformer because of its robust-
ness in the look direction. Then the quadratic constraint is written
as,

(w − wd)
HΦ(w − wd) ≤ ε

We propose to combine this quadratic constraint with the ne-
gentropy maximization criterion. The new optimization problem is
stated as,

min
w

E{G(|wH
x|2)}, s.t. (w − wd)

HΦ(w − wd) ≤ ε (5)

The quadratic constraint will ensure the solution of interest has a
flat response close to 1 in the uncertainty region. When the desired
source lies in the uncertainty region, it will be conveyed to the output
with little distortion. The negentropy maximization criterion then
will suppress the undesired sources to ensure distribution of the out-
put be as far as possible from the Gaussian distribution. In other
words, maximizing the negentropy, as an ICA criterion, will con-
verge to recover one of theN sources, while the quadratic geometric
constraint will ensure it converge to recover the desired source. The
little distorted conveyance of the desired source to the output is an
attractive attribute. It avoids the scaling ambiguity intrinsic in ICA.
This is most useful for frequency domain ICA approach, enabling

3066



0 5 10 15 20 25 30 35 40
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

SNR (dB)

C
ep

st
ra

l D
is

ta
nc

e
Cepstral Distance vs. SNR

QCICA
ICA_qcpostproc
FastICA
FastICA_DSinit
OICA
CICA

(a) Cepstral distance vs. SNR
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Fig. 1. The performance of various ICA algorithms vs. SNR (2 sources exist)

proper scaling in every frequency bin and escaping the re-scaling
headache in conventional frequency domain ICA approach. Define

w̃ = Φ1/2(w − wd)

f(w̃) = E{G(|(Φ−1/2
w̃ + wd)

H
x|2)}.

Problem (5) can be written as,

min
w̃

f(w̃), s.t. ‖w̃‖2 ≤ ε

We use the following iterative conjugate complex gradient and pro-
jection method to solve the above optimization problem (see [9] and
refs therein), where μ is a step size parameter.

w̃k = P [w̃k−1 − μ�w̃f(w̃)]

P (w̃) =

{
w̃, ‖w̃‖ ≤ √

ε

w̃
√

ε
‖w̃‖ , ‖w̃‖ >

√
ε.

3.2. Use geometric test as post-processing to ICA

The second approach for combining ICA with geometric informa-
tion is to employ a quadratic geometric test as a post-processing
step to pick up the desired source after ICA processing. In every
frequency bin, the ICA algorithm separates instantaneously mixed
source signals, then the quadratic geometric test will pick up the de-
sired source.

Assuming aM sensor, N source system. Suppose the estimated
source number is N ′ (N ′ is not necessary to be N but should satis-
fiesN ′

� N ). Suppose the ICAweight vectors arewi, i = 1, .., N ′.
We can calculate a set of response scores,wH

i Φwi, i = 1, .., N ′ (Φ
is defined in sec.3.1) based on a rough direction information of the
desired source. Because of the similarity between ICA and beam-
forming, the ICA weight vector which recover the desired source
should have a response close to 1 around the desired source’s direc-
tion, while other ICA weight vectors should have a response close
to 0 around that direction. Consequently, one of the response scores

should be close to 1 while others should be close to 0. We will pick
the ICA weight vector which yields the biggest response score to
recover the desired source.

4. SIMULATION

We provide examples on microphone array speech processing to
compare the performances of various algorithms. The image method
is used to generate artificial room impulse response. Simulated room
dimension is [8, 5, 3.5]m. We simulate an 8 element uniform lin-
ear array with 4cm inter-microphone spacing. In the experiments,
it is always assumed the look direction is the broadside direction
of the array, i.e. 0◦. Every source signal is a speech wave signal.
The frequency domain ICA approach is employed. The performance
of various algorithms is measured by the average performance fac-
tor across all frequency bins and the cepstral distance between the
recovered signal’s spectrum and the original desired source’s spec-
trum. The performance factor is defined as,

∑
i

|pi|
maxj |pj | −1, where

p = w
HA, A is the mixing matrix on one frequency bin. The

performance factor measures how the algorithm enhance the desired
source and suppress interference signals on one frequency bin. The
cepstral distance is used because it is a perceptual metric commonly
used in speech processing to measure distortion. Not only does it ac-
count for the interference and noise level, but it also detect spectrum
shape distortion. Thereby both permutation and scaling problem are
taken into consideration by a single metric.

We use the following notation for each algorithm.
• QCICA: ICA with quadratic geometric constraint (sec.3.1)
• ICA qcpostproc: Use geometric test as post-processing
(sec.3.2)

• FastICA: FastICA with random initialization (sec.2.1)
• FastICA DSinit: FastICA with Delay-and-Sum beamformer
as initialization.

• OICA: optimum ICA, the permutation problem is solved
manually assuming we know the correct permutation.
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Fig. 2. The performance of various ICA algorithms vs. SNR (2 sources exist, assumed source number is 3)

• CICA: ICA with linear geometric constraint (sec.2.2)
Example 1
There are two sources exist in this scenario, one desired source,

the other interference signal. The desired source and the interference
signal comes from direction 5◦ and 45◦ respectively. The assumed
look direction is broadside, i.e. 0◦, which means a 5◦ look direction
error. Fig.1 demonstrates the performance of various algorithms ver-
sus SNR (signal to white noise ratio).

Assuming the number of sources is known accurately. The Fas-
tICA algorithm use PCA as a preprocessing to make the mixing ma-
trix square. When FastICA use a random initialization, the perfor-
mance is bad. This is caused by the different permutation in dif-
ferent frequency bins. To give an example, we observe 60 wrong
permutations in a total of 128 frequency bins in one sample experi-
ment. When FastICA use Delay-and-Sum beamformer as initializa-
tion, the performance improves but still not good enough. Some
frequency bin may still shown permutation problem. The CICA
use PCA preprocessing as well. It shows better performance than
FastICA DSinit. When the PCA preprocessing is not done properly
with the right source number, the CICA algorithm was found to to-
tally fail. The OICA corrects the permutation problem manually and
can be taken as a baseline for the ICA algorithms. The proposed
QCICA use all 8 channels in the optimization and the Delay-and-
Sum beamformer is used for initialization. It does not use PCA pre-
processing. Its performance is close to OICA’s performance. We
observe that the proposed ICA qcpostproc has almost the same per-
formance as the OICA algorithm.

Example 2:
In this example, the scenario is the same as in Example 1 except

that the assumed source number is 3. In other words, the number
of sources is overestimated. Consequently, PCA preprocessing will
employ 3 dimensions. Fig.2 demonstrates the performance versus
SNR. The experiment results illustrate the performances of QCICA
and ICA qcpostproc are not affected much by the wrong information
about the number of sources while CICA fails under such scenario.

Example 3:

This example demonstrates the performances versus SNR when
two interference signals exist. The second interference signal comes
from direction −60◦. All the other settings are the same as those
in Example 1. The experiment results are consistent with the those
shown in Example 1 and 2. The plots are not shown here because of
limited space.
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