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ABSTRACT

In this work, we present a novel method for non-invasive iden-

tification of liquids, for instance to allow for the detection

of liquid explosives at airports or border controls. The ap-

proach is based on a nuclear magnetic resonance technique

with an inhomogeneous magnetic field, forming estimates of

the liquid’s spin-spin relaxation time, T2, and diffusion con-

stant, D, thereby allowing for a unique classification of the

liquid. The proposed detectors are evaluated using both sim-

ulated and measured data sets.

Index Terms— detection of liquid explosives, classifica-

tion, nuclear magnetic resonance

1. INTRODUCTION

On August 10, 2006, the British authorities announced that

they had foiled an attempted terrorist attack aimed at blowing

up airplanes using liquid explosives. The use of liquid ex-

plosives immediately caused worldwide restrictions on the al-

lowed amount of liquids in carry-on luggage. Airport security

can detect several forms of solid explosives, for instance using

X-rays, metal detectors, and chemical sensors (see, e.g., [1]

for a review on the topic). However, liquid explosives can

be both odourless and clear, closely resembling water, mak-

ing them exceedingly difficult to separate from typically al-

lowed fluids, such as water or alcohol. Furthermore, liquid

explosives can be so-called binary, or two-part, explosives,

resulting from the reaction of two non-explosive substances

that are easier to transport and/or harder to detect. An exam-

ple of such a binary explosive is ANNM, formed by the mix-

ing of nitromethane (easily acquired in the local drugstore)

and ammonium nitrate. The resulting explosive was, for ex-

ample, used in the Oklahoma City bombing in 1995. The

current travel restrictions are insufficient for these forms of

explosives; one terrorist may bring the nitromethane, a sec-

ond the ammonium nitrate, mixing them after passing secu-

rity or onboard the airplane. Even restricted to the allowed
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amounts, the resulting explosive could cause severe fatal con-

sequences. This work aims at developing a novel approach

to classify liquids, thus allowing for a reliable detection of

liquid explosives or liquids that can be used to form such ex-

plosives.1 We exploit a non-invasive nuclear magnetic res-

onance (NMR) technique with an inhomogeneous magnetic

field, forming the exciting radio frequency (RF) pulses into

a Carr-Purcell-Meiboom-Gill (CPMG) sequence [2, 3]. This

technique has previously been succesfully applied both for

the detection of liquid explosives [4] and in related problems

such as oil well logging and drilling [5]. Typically, in the

detection of hazardous substances, the signals resulting from

the CPMG sequences were used to form estimates of the spin-

lattice relaxation time, T1, and the spin-spin relaxation time,

T2, using these time constants, in combination with other sen-

sors, to classify the liquid [4]. Herein, different from the work

in [4], we will instead use the resulting signals to form esti-

mates of the spin-spin relaxation time, T2, and the diffusion

constant, D. To the best of the authors’ knowledge, a liq-

uid’s (T2, D)-pair allows for a unique identification of the

substance, thereby enabling the differentiation between, e.g.,

ordinary bottled water and nitromethane. In comparison with

the approach used by Dr. Burnett and co-workers, the pro-

posed technique allows for a faster classification since only

T2, and not T1, is measured. In earlier works, such as [4], the

effect of diffusion on the relaxation is assumed sufficiently

small to be neglected. This assumption might not hold if the

strength of the natural magnetic field is suddenly increased,

e.g., if the sample contains metal. The technique proposed

herein estimates the diffusion effect and makes use of it in the

classification, thereby allowing for a more reliable classifica-

tion.
2. DATA MODEL

The signal resulting from the exciting CPMG sequence can

be well modelled as the real-valued sequence [4, 6]:

y(n) = I0 exp{nβ(τ, G)} + w(n), n = 1, ...N, (1)

where w(n) denotes an additive noise sequence,

1Often, one is primarily interested in determining if the substance is either

hazardous or benign. In general, such a classification is easier than the more

general problem examined here.
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β(τ, G) = −
(

2τT−1
2 +

2
3
γ2

HG2Dτ3

)
, (2)

G = Ga+Gm, with I0 denoting the magnetisation of the spin

system without any relaxation or diffusion effect, τ the time

between the RF pulses, Ga the applied magnetisation, Gm

the natural magnetic field, and γH the gyromagnetic ratio of

hydrogen. Of these, γH = 26.75 × 107, whereas τ and Ga

are user parameters. The natural magnetic field, Gm, is also

unknown as it may vary substantially between different ex-

periments if the setup is changed or, for example, the sample

contains traces of metal. Furthermore, I0 will typically vary

between experiments and should be treated as unknown2. The

problem of interest is thus: given y(n), with Ga, τ and γH

known, estimate T2 and D. For sufficiently high signal-to-

noise ratio (SNR), the additive noise in (1) can be neglected,

allowing for the estimation of I0 using the expression

ln I0 = ln y(n) − β(τ,G)n, (3)

suggesting the estimate

ln Î0 =
1
N

N∑
n=1

[ln y(n) − β(τ, G)n]

= ỹ − β(τ,G)
N + 1

2
, (4)

where ỹ � 1
N

∑N
n=1 ln y(n). By incorporating the modelling

errors in the noise process w̃(n), and by expanding (1), using

the estimate in (4), we obtain

ln y(n) = nβ(τ, G) ln I0 + w̃(n)

= ỹ +
[
n − N − 1

2

]
β(τ, G) + w̃(n), (5)

which, expressed in vector form, suggests the least squares

(LS) estimate of β(τ, G):

β̂(τ, G) =
12

N(N + 1)(N − 1)

N∑
n=1

(
n − N + 1

2

)
ln y(n).

(6)

Using the obtained β̂(τ,G) estimate, we now proceed to ex-

amine ways to estimate the spin-spin relaxation time, T2, and

the diffusion constant, D.

2.1. The Rooting Algorithm (RA)

Assume that three measurements series are available, obtained

by varying both Ga and τ pairwise. Denote the decay of these

data series

2We note that in an ideal experiment, even for different τ values, I0 can be

expected to be constant. However, even small temperature variations and/or

magnetic field drifts over time will cause it to be different with different τ
values. Furthermore, for different Ga, I0 can be significiantly different due

to temperature effect related to current heating in the gradient coils.

βij = −2τiT
−1
2 − 2

3
γ2

HDG2
jτ

3
i ; i, j = 1, 2 (7)

Gj = Ga,j + Gm. (8)

To find T2, we use the two data series that have the same Ga

but different τ . First rewrite (7) as

−2
3
γ2

HDG2
j =

(
βij + 2τiT

−1
2

)
/τ3

i . (9)

For data series with equal Ga, we have

β11 + 2τ1T
−1
2

τ3
1

=
β21 + 2τ2T

−1
2

τ3
2

, (10)

so that an estimate of T2 can be obtained as

T̂2 =
[

β11τ
3
2 − β21τ

3
1

2(τ3
1 τ2 − τ1τ3

2 )

]−1

. (11)

For the estimation of D, we use the two data series that have

equal τ but different Ga. Let

β̃ = βi1 − βi2 = −2
3
γ2

HDτ3
i

(
G2

1 − G2
2

)
= −2

3
γ2

HDτ3
i G̃a

(
Ḡa + Gm

)
, (12)

where

G̃a = Ga,1 − Ga,2 (13)

Ḡa = Ga,1 + Ga,2. (14)

Solving (12) for Gm yields

Gm = −1
2

(
β̃

2
3γ2

HDτ3
i G̃a

+ Ḡa

)
. (15)

Inserting (15) in (7), we obtain c2D
2 + c1D + c0 = 0, where

c2 �
(

G2
a,j − Ga,jḠa +

1
4
Ḡ2

a

)
2
3
γ2

Hτ3
i (16)

c1 � 2τiT
−1
2 − βij +

β̃
(

1
2 Ḡa − Ga,j

)
G̃a

(17)

c0 � β̃2

4 2
3γ2

Hτ3
i G̃2

a

. (18)

Solving this second order equation yields two different roots;

to decide which of the roots to use, we compare the Euclidian

distance of the resulting (T̂2, D̂)-pair, using T̂2 from (11) and

D̂ from each root, with the known (T2, D)-pairs of the sub-

stances of interest. The estimate of D is selected as the root

minimizing this distance.

2.2. The Weighted Searching Algorithm (wSA)

As an alternative, we also consider an algorithm that esti-

mates the unknown parameters using a nonlinear search. Let

θ =
[
T−1

2 , D, Gm

]
denote the unknown parameters. These
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Fig. 1. Normalized MSE of the estimation of (a) T2, and (b) D
when the user parameters are drawn from a uniform random

distribution.

are then estimated using a weighted least-squares (WLS) ap-

proach:

θ̂ = arg min
θ

K∑
k=1

[
β̂k − βk

]2

wk, (19)

with β̂k obtained from (6) and βk defined as in (2). An intu-

itive way of determining the weights, wk, is to use the inverse

of the Cramér-Rao Lower Bound3 (CRLB) of the βk estimate.

Doing so, larger credit will be given to β̂k’s obtained by set-

ting the user parameters τ and Ga such that the estimate gets

lower variance. To formulate the CRLB, we will here assume

that w̃(n) can be modelled as a zero mean white Gaussian

process with variance σ2. As shown in Section 4, the result-

ing weights are then formed as

wk = [CRLB(βk)]−1 =
I2
0r2P (r)

(1 − rN )(1 − r)3
, (20)

where P (r) = 1−N2rN−1+2(N2−1)rN −N2rN+1+r2N

and r � e2βk .4

3. NUMERICAL EXAMPLES

We examined the performance of the proposed classifiers, gen-

erating simulated nitromethane data according to the model

(1) with T2 = 3.35 s and D = 2.62 × 10−9m2s−1. The user

parameters τ and Ga were distributed uniformly in the inter-

vals5 [1, 20] ms and ±[1, 5] A, respectively. The sign of Ga

was also chosen randomly. The natural magnetic field, Gm,

and the initial magnetization, I0, were set to 11 × 10−4 T/m

and 800, respectively. The data was corrupted with zero-mean

white Gaussian noise with power σ2
w. The SNR was defined

as SNR = σ2
sσ−2

w , where σ2
s denotes the power of the noise-

free signal. A total number of 105 Monte-Carlo simulations

3The CRLB is a theoretical lower limit for the variance of an unbiased

estimator. See, e.g., [7, 8] for further details.
4We note that the noise variance has been removed from the weight since

a pure scaling will not change the result.
5The transformation from A to T/m of Ga is done by multiplication with

47.15 × 10−4 T/(Am).
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Fig. 2. Probability of correct classification versus SNR for

nitromethane.

were performed. From each simulation, the estimates of D
and T2 were computed and compared with the true values us-

ing the normalized mean squared error:

nMSE =
1
N

N∑
n=1

(
x − x̂n

x

)2

, (21)

where x is the true parameter, x̂n is an estimate thereof from

the nth simulation, and N is the number of simulations. Fur-

thermore, if |Ga,i − Ga,j | < εGa
, i, j = 1, 2, 3, i �= j, where

εGa
= 0.001, the parameters were redrawn. Similarly for τ

with ετ = 0.001 and for β with εβ = 0.001. This since β’s

that are too similar in the three measurement series will cause

failure of the estimation algorithms. For wSA, the lower lim-

its of the search region for T2, D and Gm were set to 0.1 s,

1× 10−9m2s−1, and 1× 10−4 T/m, respectively, whereas the

upper limits were 6 s, 5 × 10−9m2s−1, and 20 × 10−4 T/m,

respectively. As initial values of the search we used 0.5 s,

2×10−9m2s−1, and 10×10−4 T/m, respectively. The values

were chosen so that the T2- and D-values (see Tab. 1) of the

substances of interest, together with the likely values of Gm,

were comprised in the search region. The results of the simu-

lations are shown in Fig. 1(a) and Fig. 1(b). As can be seen in

Fig. 1(a), wSA outperforms RA for lower SNR, whereas RA

works best for larger SNR.

We proceed to compare the algorithms in terms of prob-

ability of correct classification. Again, we generated simu-

lated nitromethane data and added noise, but the user param-

eters were fixed and set to τ1 = τ3 = 16 ms, τ2 = 10 ms,

Ga,1 = Ga,2 = 1.6 A and Ga,3 = 2.0 A for RA; for wSA

we set τ1 = 16 ms, τ2 = 14 ms, τ3 = 10 ms, Ga,1 = 1.6 A,

Ga,2 = 2.0 A, and Ga,3 = −1.6 A. The same boundaries

and initial values as in the MSE study were used. The algo-

rithms were evaluated using 5000 Monte-Carlo simulations.

The results can be seen in Fig. 2 and we see that wSA was
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Table 1. (T2, D)-pairs for different substances

Nbr Liquid T2 (s) D (10−9m2s−1)

1 Oxygen free water� 3.60 2.30

2 Ethanol� 3.5 1.08

3 Acetone 3.00 4.25

4 Methanol� 8.0 2.42

5 Benzene� 19 2.21

6 Acetic acid� 3.8 1.08

7 Cyclohexane� 6.5 1.42

8 Toluene� 12.5 2.27

9 Tap water (London) 2.24 2.37

10 Semi-skimmed milk 0.17 2.16

11 Liquid soap 1.70 1.96

12 Nitromethane 3.35 2.62
�The values of T2 and D for these substances have not been verified

in our experiments and have to be considered approximative.

able to give correct classification in 100% of the trials for an

SNR of 40dB and higher, whereas RA does this for an SNR

of 50dB and higher. For low SNR the probability of giving

correct classification is poor for both algorithms, even though

the chance is higher for wSA.

Finally, we evaluate the algorithms on data measured in

the laboratory using tap water, obtained with τ = 10, 12,
18, 20 ms for Ga = 1.6,−1.6, 2.0 A, a total of 12 series. Tak-

ing three different series out of these 12, permuted such that

the requirements of RA were fulfilled, we performed 72 trials.

The results can be see in Fig. 3, were the performance of wSA

on the same series is displayed. Interestingly, we note that RA

is able to correctly classify 98.6% of the trials whereas wSA

only does it in 40.3% of the trials, exhibiting an apparent bias.

The reasons for this is a topic of further study.

4. DERIVATION OF THE WEIGHTING
COEFFICIENTS

Let μ � I0e
nβ and θ � [I0, β]. Using the Slepian-Bang

formula (see, e.g., [7]), we can express the Fisher information

matrix (FIM) as:

FIM =
1
σ2

N∑
n=1

(
∂μ

∂θ

)T (
∂μ

∂θ

)
(22)

The CRLB is then given by the diagonal elements of the in-

verse of the FIM. We thus have that CRLB(β) = [FIM−1]22,

where

FIM =
1
σ2

N∑
n=1

[
enβ nI0e

nβ
]T [

enβ nI0e
nβ

]
. (23)

Using geometric progression on the inverse of (23), the ex-

pression in (20) is obtained.
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Fig. 3. The algorithms applied on measured tap water data.

The numbers correspond to the ones in Tab. 1.
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