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ABSTRACT

Self-consistency is a fundamental principle in statistics for re-
taining maximum amount of information in the data. In this
paper this principle is applied to develop a new method for
nonparametric spectrum estimation with missing data. One
major advantage of the proposed method is that it can be
coupled with any complete data nonparametric spectrum es-
timation procedure, including kernel smoothing, wavelet and
spline estimators. The practical performance of the method is
illustrated by a simulation study.

Index Terms— missing data, nonparametric spectrum es-
timation, periodogram smoothing, self-consistency

1. INTRODUCTION

Spectral density estimation is an important problem that arises
in many different application areas, including astrophysics,
communications and geology, just to name a few. Very of-
ten, data collected from these applications contain missing
values. This forbids the use of many powerful periodogram-
based nonparametric spectral analysis techniques, as the dis-
crete Fourier transform cannot be directly applied to calculate
the periodogram when part of the data is missing.
To overcome this issue, different methods for spectral

density estimation with missing data have been proposed. In
the astrophysics literature, a popular nonparametric approach
for spectral estimation with missing data is the Lomb-Scargle
method [11, 16]. This method “re-constructs” the complete
data set by imputing the missing values with the mean of the
observed data, so that the discrete Fourier transform can be
applied. A potential shortcoming of this time-domain mean-
imputation is that high frequency information in the data may
be destroyed. See also [1] and [4] for some theoretical investi-
gations. More recently, a nonparametric missing data spectral
estimation procedure that uses the EM-Algorithm was devel-
oped by [19]. However, as noted by [2], although this new
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nonparametric EM-Algorithm performs well in terms of de-
tect strong spectral peaks, it performs poorly at regions where
the spectrum is of low energy.
In this paper we propose a new method for nonparametric

spectral density estimation with missing data. In particular,
we adopt the self-consistency principle to optimally impute
the missing data, so that an “imputed periodogram” can be
obtained by applying the discrete Fourier transform to the im-
puted complete data. As illustrated by [18], self-consistency
is a fundamental concept in statistics, and is a powerful and
widely applicable statistical principle for retaining as much
as possible the information in the data. It has been applied
to construct the most efficient estimation procedures in many
different contexts, including maximum likelihood estima-
tion via the EM-Algorithm in the parametric setting, and
the Kaplan-Meier estimator [8] in the nonparametric setting.
Therefore it is not unexpected that our proposed method,
as demonstrated below, also possesses excellent statistical
properties.
In addition, another advantage of our approach is that it is

extremely flexible, in the sense that it can be coupled with any
complete data nonparametric spectrum estimation techniques,
such as kernel smoothing, wavelet regression, or spline esti-
mators. It can also be straightforwardly extended to higher di-
mensional settings, or to parametric or semiparametric mod-
eling. For simplicity, we shall illustrate our approach with
kernel estimators.
The rest of this paper is organized as follows. Background

material that is required from the rest of the paper is first re-
viewed in Section 2. Then the proposed method for spec-
tral density estimation with missing data is presented in Sec-
tion 3. The empirical performance of the proposed method
is illustrated via numerical experiments in Section 4. Lastly,
concluding remarks are offered in Section 5.

2. BACKGROUND

2.1. Spectral Density Estimation with Complete Data

We first review the basic ingredients for spectrum estima-
tion by smoothing the periodogram when there is no miss-
ing data. Let Y0, . . . , Y2n−1 be a finite-sized realization of a
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real-valued, zero mean stationary process {Yt} with unknown
spectrum f . To estimate f nonparametrically, one typically
starts by calculating the periodogram, defined as

I(ω) =
1

2π × 2n

∣∣∣∣∣
2n−1∑
t=0

Yt exp(−iωt)

∣∣∣∣∣
2

, ω ∈ [0, 2π).

To simplify notation, write ωj = πj/n, fj = f(ωj) and Ij =
I(ωj). Since the spectrum f is symmetric about ω = π, the
rest of this article shall focus on fj for j = 0, . . . , n − 1.
Also, as f is periodic with period 2π, we have f−j = fj and
I−j = Ij for j = 1, . . . , n − 1.
In this paper we adopt the following model for I j :

Ij = fjεj, j = 0, . . . , n − 1, (1)

where the εj’s are independent standard exponential random
variables. This model has been used by many previous au-
thors [e.g., 9, 14, 15] Under model (1), it is straightforward to
see E(Ij) = fj and Var(Ij) = f2

j . Given its large variance,
Ij is seldom used as an estimate of fj . One approach to re-
duce the variance and obtain a consistent estimate for f is to
apply kernel smoothing to the periodogram, as follows. Let
K(·) be a univariate kernel function and h be a nonnegative
smoothing parameter that controls the amount of smoothing.
The kernel K(·) is often taken as a symmetric density func-
tion. Write Kh(·) = 1

hK( ·
h ). Then the kernel estimator f̂j

for fj is given by

f̂j =
2n−1∑

m=−n

Kh(ωm − ωj)Im

/ 2n−1∑
l=−n

Kh(ωl − ωj) (2)

for j = 0, . . . , n − 1. It is widely known that the choice of h
plays an important role in the quality of f̂j . Automatic meth-
ods for selecting h can be found for examples in [6, 15] and
references given therein. We note that f̂j is a function of h,
but for simplicity this dependence is suppressed in its nota-
tion. In many other kernel smoothing problems the summa-
tion limits in both the numerator and denominator in (2) are 0
and n − 1. However, since for the present problem boundary
effects can be handled by periodic smoothing, the limits are
changed from 0 and (n−1) to (−n) and (2n−1), respectively.
Lastly, we note that if the autocovariance function of {Y t}

is denoted as γ(k) = Cov(Yt, Yt+k), then we have

γ(k) =
∫ π

−π

f(ω)eiωkdω. (3)

2.2. The Self-Consistency Principle

One important task in signal processing is to obtain a con-
cise summary of data while at the same time retain as much
information as possible. Suppose we wish to approximate a
target random vector X by a second random vector Z that is
simpler in structure. If we quantify the approximation error

with the measure E‖X − Z‖2, then the approximation can
always be improved by using E(X|Z) instead of Z. It is be-
cause, for any function g(·) including the identity, we have
E‖X − E(X|Z)‖2 ≤ E‖X − g(Z)‖2. This leads to the fol-
lowing definition for self-consistency provided by [18]: For
two jointly distributed random vectors X and Z, Z is self-
consistent forX if

E(X|Z) = Z almost surely.

In fact, such notion of self-consistency can be dated back
at least as early as [5], and has been applied successfully to
construct many efficient estimators, and to define various lin-
ear and nonlinear data summaries [e.g., 7, 17]. More recently,
it has also been applied to derive wavelet image denoising
with missing data [10]. Of course, some most fruitful and
influential outcomes originated from the applications of the
self-consistency principle are the EM-Algorithm and its var-
ious generalizations [e.g., 12, 13], for which when the prin-
ciple is applied to the complete data score function, it fre-
quently leads to the incomplete data maximum likelihood es-
timator. Given these successful examples, in below we will
apply this self-consistency principle to construct our nonpara-
metric spectral density estimator for missing data.

3. THE PROPOSEDMETHOD

First we fix the notation. In sequel we write the complete data
as Ycom = (Y0, . . . , Y2n−1), and denote the observed and
missing portions of Ycom as Yobs and Ymis, respectively.
With this notation our goal is to estimate f when only Yobs

is available.
Our proposal begins with the assumption that an efficient

complete data spectrum estimation method is available for
estimating f if Ycom is given. In our framework no struc-
tural assumption is made about this complete data estimation
method: it can be parametric, nonparametric, or even semi-
parametric, although our focus will be on nonparametric. De-
note the corresponding estimate for f obtained by this com-
plete data method as f̂com. Then, when onlyYobs is available,
we define our missing data estimate f̂ for f as the solution to
the following self-consistent equation:

E
{

f̂com(·)∣∣Yobs, f = f̂
}

= f̂(·). (4)

The solution of this self-consistent equation, as demonstrated
next, can be approximated numerically via an iterative pro-
cess, as long as the missing portion of Ycom can be (condi-
tionally) simulated givenYobs and an estimate of f .
To solve (4), one could iterate the between following two

steps. The first step is to, given a current estimate f̂ , calcu-
late the conditional expectation on the left-hand side, while
the second step is to set the next iterative estimate for f as
this calculated conditional expectation. Unfortunately, for the
present problem the conditional expectation cannot always be
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calculated analytically, and one could use Monte Carlo ap-
proximation to overcome this issue. This leads to our pro-
posal, the MCSC-Algorithm, for nonparametric spectrum es-
timation with missing data.

Algorithm 1 Monte-Carlo Self-Consistent (MCSC) Al-
gorithm for Nonparametric Spectral Density Estimation
with Missing Data

Begin with an initial estimate f̂ (0) of f , iterate until con-
vergence the following steps for t = 1, 2, . . .:

1. From f̂ (t−1) obtain γ̂(t−1) through (3).

2. Form = 1, . . . , M ,

2a. simulate the missing data Ymis,m from the
distributionYmis,m|Yobs, γ = γ̂(t−1);

2b. from the imputed complete data set
{Yobs,Ymis,m}, calculate the m-th im-
puted periodogram Iimp,m, and

2c. apply the complete data spectrum estimation
procedure to Iimp,m and obtain f̂imp,m.

3. Compute the t-th iterative estimate f̂ (t) of f as the
average of all f̂imp,m; i.e.,

f̂ (t)(ω) =
M∑

m=1

f̂imp,m(ω).

Declare convergence when the distance between
f̂ (t−1) and f̂ (t) is sufficiently small.

Notice that a major advantage of the MCSC-Algorithm is its
great flexibility, in the sense that in Step 2c one can apply any
nonparametric estimator to the imputed periodogram I imp,m

to obtain f̂imp,m. For examples, one could use wavelet esti-
mators, or spline estimators. In all our numerical work to be
reported below, we used the kernel estimator (2) with band-
width chosen by the method of [6].
One could also further generalize Step 2c to other spec-

tral estimation techniques, such at those based on log-
periodogram smoothing, or even to those that impose a
parametric form on the spectrum. Even further, one could
also easily modify the MCSC-Algorithm to handle higher
dimensional problems.
Lastly, we remark that in our implementation the initial

estimate f̂ (0) is obtained by smoothing the periodogram com-
puted from the Lomb-Scargle method; i.e., by time-domain
mean-imputation. Also, details for carrying out the condi-
tional simulation of Ymis,m in Step 2a can be found in many
standard references, such as [3].

4. SIMULATION STUDY

A simulation study was conducted to evaluate the practical
performance of the MCSC-Algorithm. Two spectral densities
from the ARMA(α, β) model

Yt + a1Yt−1 + · · · + aαYt−α = et + b1et−1 + · · · + bβet−β

with et as iid N(0, 1) were used to simulate {Yt}. Spec-
trum 1 corresponds to an AR(3) process with (a1, a2, a3) =
(0.9, 0.8, 0.6), while Spectrum 2 corresponds to a MA(3) pro-
cess with (b1, b2, b3) = (0.9, 0.8, 0.6). These two spectra
have been used by previous authors [9, 15] and are displayed
in Figure 1.
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Fig. 1. The two spectral densities used in the simulation study.

For each spectrum, 500 realizations {Yt}2n−1
t=0 were simu-

lated with 2n = 512. Then for each realization, missing data
were introduced with the following four mechanisms:

1. randomly remove 10% of the observations;

2. remove the middle 10% observations, i.e., leaving a gap
of 10% missing values in the middle;

3. randomly remove 30% of the observations; and

4. remove total 30% of the observations, in the form of 3
equi-length gaps, 10% each, starting at t = n/5, 3n/5,
and n.

Lastly, both the Lomb-Scargle method and the MCSC-
Algorithm were applied to each realization with missing
data to estimate the corresponding spectrum. Their corre-
sponding mean-squared-errors MSE = 1

n

∑n−1
j=0 (f̂j − fj)2

were calculated. For benchmark comparison, we also com-
puted the MSEs of the spectrum estimates obtained by using
the complete data. The means of

√
MSE, together with their

standard errors, are listed in Table 1. One could see that the
proposed MCSC-Algorithm is capable of achieving a sub-
stantial reduction of

√
MSE, especially for higher missing

data percentages.
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method spectrum 1 spectrum 2
10% missing at random

Lomb-Scargle 0.176 (0.002) 0.180 (0.004)
MCSC 0.162 (0.002) 0.136 (0.004)

complete data 0.156 (0.002) 0.134 (0.004)

10% missing, gap in the middle
Lomb-Scargle 0.165 (0.002) 0.165 (0.004)
MCSC 0.159 (0.002) 0.154 (0.003)

complete data 0.151 (0.002) 0.133 (0.003)

30% missing at random
Lomb-Scargle 0.282 (0.002) 0.349 (0.003)
MCSC 0.248 (0.002) 0.147 (0.003)

complete data 0.154 (0.003) 0.132 (0.003)

30% missing, with three gaps of length 10%
Lomb-Scargle 0.231 (0.002) 0.274 (0.004)
MCSC 0.201 (0.002) 0.228 (0.003)

complete data 0.154 (0.003) 0.136 (0.004)

Table 1. Averages of
√
MSE of the estimated spectral den-

sity using different methods. Numbers in parentheses are the
corresponding standard errors.

5. CONCLUDING REMARKS

In this paper the self-consistency principle is applied to de-
velop a new method for nonparametric spectrum estimation
with missing data. The resulting proposal, termed the MCSC-
Algorithm, is extremely flexible and performed well in a
simulation study. Additional numerical results, together with
some theoretical properties of the MCSC-Algorithm, will be
reported elsewhere.
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