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ABSTRACT

We study the problem of recovering a non-negative sparse sig-

nal x ∈ R
n from highly corrupted linear measurements y =

Ax+e ∈ R
m, where e is an unknown (and unbounded) error.

Motivated by an observation from computer vision, we prove

that for highly correlated dictionaries A, any non-negative,

sufficiently sparse signal x can be recovered by solving an

�1-minimization problem:

min ‖x‖1 + ‖e‖1 subject to y = Ax + e.

If the fraction ρ of errors is bounded away from one and the

support of x grows sublinearly in the dimension m of the ob-

servation, for large m, the above �1-minimization recovers all

sparse signals x from almost all sign-and-support patterns of

e. This suggests that accurate and efficient recovery of sparse

signals is possible even with nearly 100% of the observations

corrupted.

Index Terms— Error correction, Signal representation,

Signal reconstruction

1. INTRODUCTION

Recovery of high-dimensional sparse signals or errors has

been one of the fastest growing research areas in signal pro-

cessing in the past few years. A lot of excitement has been

generated by remarkable successes in application areas such

as image and speech processing, bioinformatics, communica-

tions, as well as computer vision and pattern recognition.1

One notable, and somewhat non-traditional, application of

sparse representation is in automatic face recognition [3]. For

each person, a set of training images are taken under different

illuminations. Stack the images as columns of a matrix A ∈
R

m×n, where m is the number of pixels in an image and n is

the total number of images for all the subjects of interest. We

can try to represent a new query image, stacked as a vector

y ∈ R
m as a linear combination of all the images, i.e., y =

This work is partially supported by grants NSF CRS-EHS-0509151,

NSF CCF-TF-0514955, ONR YIP N00014-05-1-0633, and NSF IIS 07-
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1For a more thorough survey of this rapidly expanding literature, see [1,

2].
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Fig. 1. Face recognition under random corruption. Inset left:
face with 60% of pixels randomly corrupted. Inset right: face recov-
ered by sparse representation within a database of face images [3].
Red curve: recognition rate across the entire range of corruption. It
remains almost perfect up to 60% random corruption.

Ax for some x ∈ R
n. Since in practice n can potentially be

larger than m, the equations can be underdetermined and the

solution x may not be unique. In this context, it is natural to

seek a sparse solution for x whose large non-zero coefficients

provide information about the subject’s true identity. This can

be done by solving an �1-minimization problem:

min
x

‖x‖1 subject to y = Ax. (1)

The problem becomes more interesting if the query image

y is severely occluded or corrupted, as in Figure 1 (inset). In

this case, one needs to solve a corrupted set of linear equations

y = Ax + e, where e ∈ R
m is an unknown (and possibly

unbounded) error vector. For sparse errors e and tall matrices

A (m > n), Candes and Tao [4] proposed to multiply the

equation y = Ax+e with a matrix B such that BA = 0, and

then use �1-minimization to recover the error vector e from

the underdetermined linear equation By = Be.

In face recognition (and many other applications), n can

be larger than m and A can be full rank. One cannot directly

apply the above technique even if the error e is known to be

very sparse. To resolve this difficulty, in [3], the authors pro-

posed to instead seek [x, e] together as the sparsest solution to

the extended equation y = [A I] w with w = [ x
e ] ∈ R

m+n,

by solving the extended �1-minimization problem:

min
w

‖w‖1 subject to y = [A I] w. (2)
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Fig. 2. The “cross-and-bouquet” model. Left: the bouquet A and
the crosspolytope spanned by the matrix ±I. Right: tip of the bou-
quet magnified; it is a collection of iid Gaussian vectors with small
variance σ2 and common mean vector μ. The cross-and-bouquet
polytope is spanned by vertices from both the bouquet A and the
cross ±I.

This seemingly minor modification to the previous error cor-

rection approach has dramatic consequences on the perfor-

mance of robust face recognition. Solving the modified �1-

minimization enables almost perfect recognition even with

more than 60% pixels of the query image are arbitrarily cor-

rupted (see Figure 1 for an example), far beyond the amount

of error that can theoretically be corrected by the previous er-

ror correction method [4].

Although �1-minimization is expected to recover suffi-

ciently sparse solutions with overwhelming probability for

general systems of linear equations (see [5]), it is rather sur-

prising that it works for the equation y = [A I] w at all. In

the application described above, the columns of A are highly

correlated. As m becomes large (i.e. the resolution of the

image becomes high), the convex hull spanned by all face im-

ages of all subjects is only an extremely tiny portion of the

unit sphere S
m−1.2 For example, the images in Figure 1 lie

on S
8,063. The smallest inner product with their normalized

mean is 0.723; they are contained within a spherical cap of

volume ≤ 1.47 × 10−229. These vectors are tightly bundled

together as a “bouquet,” whereas the vectors associated with

the identity matrix and its negative ±I together3 form a stan-

dard “cross” in R
m, as illustrated in Figure 2. Notice that

such a “cross-and-bouquet” matrix [A I] is neither incoher-

ent nor (restrictedly) isometric, at least not uniformly. Also,

the density of the desired solution w is not uniform either.

The x part of w is usually a very sparse non-negative vec-

tor, but the e part can be very dense and have arbitrary signs.

Existing results for recovering sparse signals suggest that �1-

minimization may have difficulty in dealing with such signals,

contrary to its empirical success in face recognition.

We have experimented with similar cross-and-bouquet

type models where the matrix A is a random matrix with

highly correlated column vectors. The simulations reveal

something even more striking and puzzling phenomenon: As

2At first sight, this seems somewhat surprising as faces of different people

look so different to human eyes. That is probably because human brain has

adapted to distinguish highly correlated visual signals such as faces or voices.
3We allow the error e to have both positive and negative signs.

the dimension m increases (and the sample size n grows in

proportion), the percentage of errors that the �1-minimization

(2) can correct seems to approach 100%! This may seem sur-

prising, but this paper explains why this should be expected.

2. PROBLEM SETTING AND MAIN RESULT

Motivated by the face recognition example introduced above,

we consider the problem of recovering a non-negative4 sparse

signal x0 ∈ R
n from highly corrupted observations y ∈ R

m:

y = Ax0 + e0,

where e0 ∈ R
m is a sparse vector of errors of arbitrary magni-

tude. The model for A ∈ R
m×n should capture the idea that it

consists of small deviations about a mean, hence a “bouquet.”

In this paper, we consider the case where the columns of A
are iid samples from a Gaussian distribution:

A = [a1 . . .an] ∈ R
m×n, ai ∼iid N

(
μ, ν2

m Im

)
,

‖μ‖2 = 1, ‖μ‖∞ ≤ Cμm−1/2.

(3)

Together, the two assumptions on the mean force it to remain

incoherent with the standard basis (or “cross”) as m → ∞.
We study the behavior of the solution to the �1-minimization

(2) for this model, in the following asymptotic scenario:

Assumption 1 (Weak Proportional Growth). A sequence of
signal-error problems exhibits weak proportional growth with
parameters δ > 0, ρ ∈ (0, 1), C0 > 0, η0 > 0, denoted
WPGδ,ρ,C0,η0 , if as m → ∞,

n

m
→ δ,

‖e0‖0

m
→ ρ, ‖x0‖0 ≤ C0 m1−η0 . (4)

This should be contrasted with the “total proportional growth”

(TPG) setting of, e.g., [6], in which the number of nonzero en-

tries k1 in the signal x0 also grows as a fixed fraction of the

dimension. In that setting, one might expect a sharp phase

transition in the combined sparsity of (x0, e0) that can be re-

covered by �1-minimization. In WPG, on the other hand, we

observe a striking phenomenon not seen in TPG: the correc-

tion of arbitrary fractions of errors. This comes at the expense

of the stronger assumption that k1
.= ‖x0‖0 is sublinear, an

assumption that is valid in some real applications such as the

face recognition example above.

In the following, we say the cross-and-bouquet model is

�1-recoverable at (I, J,σ) if for all x0 ≥ 0 with support I
and e0 with support J and signs σ,

(x0, e0) = arg min ‖x‖1 + ‖e‖1

subject to Ax + e = Ax0 + e0, (5)

and the minimizer is uniquely defined. From the geometry of

�1-minimization, if (5) does not hold for some pair (x0, e0),
4The non-negativity assumption is important: in the highly coherent sys-

tems considered here, �1-minimization does not recover signals x0 with arbi-

trary signs. Geometrically, this would require vectors from the “bouquet” to

“see” through the crosspolytope to vectors that are nearly antipodal to them.
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Fig. 3. Comparison with alternative approaches. Fraction of
correct successes, as a function of the corruption level, ρ. Here,
ν = 0.05, δ = 0.25. The extended �1-minimization “L1 − [A I]”
outperforms the approach of [4] (“L1− ⊥ comp”) and ROMP [8].

then it does not hold for any (x, e) with the same signs and

support as (x0, e0) [7]. Understanding �1-recoverability at

each (I, J,σ) completely characterizes which solutions to

y = Ax+e can be correctly recovered. In this language, our

main result can be stated more precisely as:

Theorem 1 (Error Correction with the Cross-and-Bouquet).
For any δ > 0, ∃ ν0(δ) > 0 such that if ν < ν0 and ρ < 1, in
WPGδ,ρ,C0,η0 with A distributed according to (3), if the error
support J and signs σ are chosen uniformly at random, then
as m → ∞,

PA,J,σ

[
�1-recoverability at (I, J,σ) ∀ I ∈

(
[n]
k1

)]
→ 1.

In other words, as long as the bouquet is sufficiently tight,

asymptotically �1-minimization recovers any non-negative

sparse signal from almost any error with support size less

than 100%. The proof of the above result relies on a care-

ful characterization of the faces of the polytope spanned by

the cross and bouquet. While it requires only standard ideas

from geometry, linear algebra and measure concentration, the

details are far beyond the scope of this paper. We refer the

interested reader to [2].

3. SIMULATIONS AND EXPERIMENTS

a) Comparison with alternative approaches. We first com-

pare the performance of the extended �1-minimization (2) to

two alternative approaches. The first is the error correction

approach of [4], which multiplies by a full rank matrix B
such that BA = 0,5 solves min ‖e‖1 subj Be = By, and

then subsequently recovers x from the clean system of equa-

tions Ax = y − e. The second is the Regularized Orthogo-

nal Matching Pursuit (ROMP) algorithm [8], a state-of-the-art

greedy method for recovering sparse signals.

For this experiment, the ambient dimension is m = 500;

the parameters of the CAB model are ν = 0.05, δ = 0.25.

We fix the signal support k1 = 15, and vary the fraction

5This comparison requires n � m although our method is not limited to

this case.
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(a) ‖x0‖0 = 1
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(b) ‖x0‖0 = m1/2

Fig. 4. Error correction in weak proportional growth. (a), (b):
Simulated examples with δ = 0.25, ν = 0.05. Fraction of suc-
cessful recoveries as a function of error density ρ, for varying m. In
(a), ‖x0‖0 = 1, while in (b), ‖x0‖0 = m1/2. In both cases, as m
increases, the fraction of errors that can be corrected approaches 1.

of errors from 0 to 0.95. For each error fraction, we gen-

erate 500 independent problems. Figure 3 plots the fraction

of successes for each of the three algorithms, as a function

of error density ρ. The extended �1-minimization is denoted

“L1−[A I]” (red curve), while the alternative approach of [4]

is denoted “L1− ⊥ comp” (blue curve). Whereas both com-

petitors break down around 40% corruption, the extended �1-

minimization continues to succeed with high probability even

beyond 60% corruption.

b) Error correction capacity. While the previous experiment

demonstrates the advantages of the extended �1-minimization

(2) for the CAB model, Theorem 1 suggests that more is true:

As the dimension increases, the fraction of errors that the ex-

tended �1-minimization can correct should approach one. We

generate problem instances with δ = 0.25, ν = 0.05, for

varying m = 100, 200, 400, 800, 1600. We again plot the

fraction of correct recoveries as a function of ρ in Figure 4

(a) and (b). In Figure 4(a), we fix k1 = 1, while in (b), k1

grows as k1 = m1/2. In both cases, as m increases, the frac-

tion of errors that can be corrected also increases.

c) Phase Transition in Total Proportional Growth. Theorem

1 does not provide any explicit information about the behav-

ior of �1-minimization when the signal support k1 grows pro-

portionally to m: k1/m → ρ1 ∈ (0, 1). Based on intu-

ition from more homogeneous polytopes (especially [9]), we

might expect that when k1 also exhibits proportional growth,

an asymptotically sharp phase transition between guaranteed

recovery and guaranteed failure will occur at some critical

error fraction ρ∗ ∈ (0, 1). We investigate this empirically
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Fig. 5. Phase transition in total proportional growth. When
‖x0‖0 grows linearly, we observe an asymptotically sharp phase
transition. Here, ν = 0.05, δ = 0.25, ‖x0‖0 = 0.05m.
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Fig. 6. Error correction with real face images. Left: fraction of
correct recoveries for varying levels of occlusion. Right: examples
of correct recovery for each resolution. The fraction of corruption is
chosen so that the probability of correct recovery is 50%.

here by again setting δ = 0.25, ν = 0.05, but this time al-

lowing k1 = 0.05m. Figure 5 plots the fraction of correct

recovery for varying error fractions ρ, as m grows: m =
100, 200, 400, 800, 1600. In this proportional growth setting,

we see an increasingly sharp phase transition, near ρ = 0.6.

d) Error correction with real face images. Finally, we return

to the motivating example of face recognition under varying

illumination and random corruption. We use the Extended

Yale B face database [10], which tests illumination sensitivity

of face recognition algorithms. We form the matrix A from

images in Subsets 1 and 2, which contain mild-to-moderate il-

lumination variations. Each column of the matrix A is a w×h
face image, stacked as a vector in R

m (m = w × h). Here,

the weak proportional growth setting corresponds to the case

when the total number of image pixels grows proportionally

to the number n of face images. Since the number of im-

ages per subject is fixed, this is the same as the total image

resolution growing proportionally to the number of subjects.

We vary the image resolutions through the range 34 × 30,

48 × 42, 68 × 60, 96 × 84. The matrix A is formed from

images of 4, 9, 19, 38 subjects, respectively, corresponding to

δ ≈ 0.09. Here, ν ≈ 0.3. In face recognition, the sublin-

ear growth of ‖x0‖0 comes from the fact that the observation

should ideally be a linear combination of only images of the

same subject. Various estimates of the required number of im-

ages, k1, appear in the literature, ranging from 5 to 9. Here,

we fix k1 = 7, and generate the (clean) test image synthet-

ically as a linear combination of k1 training images from a

single subject. For each resolution considered, and for each

error fraction, we generate 75 trials. Figure 6 plots the frac-

tion of successes as a function of the fraction of corruption.

As predicted by Theorem 1, the fraction of errors that can be

corrected again approaches 1 as the data size increases.

4. DISCUSSIONS AND FUTURE WORK

This work analyzes one scenario, motivated by a practi-

cal imaging application, in which the performance of �1-

minimization greatly exceeds what might be expected based

on existing theory. We believe that similar analysis of other

practical applications may likewise reveal phenomena of

broad practical and theoretical interest. Even for this simple

model, there is still much to be done. In particular, while the

�1-minimizer is known to be stable under noise, it would be

interesting to provide an explicit stability bound, as a func-

tion of ν. We would also like to investigate the relevance

of this result to compressive image acquisition problems, by

analyzing how much error tolerance remains after randomly

projecting y onto a low dimensional subspace.
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