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ABSTRACT

We propose a “compressive” estimator of the Wigner-Ville spec-
trum (WVS) for time-frequency sparse, underspread, nonstationary
random processes. A novel WVS estimator involving the signal’s
Gabor coefficients on an undersampled time-frequency grid is com-
bined with a compressed sensing transformation in order to reduce
the number of measurements required. The performance of the com-
pressive WVS estimator is analyzed via a bound on the mean square
error and through simulations. We also propose an efficient imple-
mentation using a special construction of the measurement matrix.

Index Terms— Nonstationary spectral estimation, Wigner-Ville
spectrum, Gabor expansion, compressed sensing, sparse reconstruc-
tion, basis pursuit

1. INTRODUCTION

The recently introduced methodology of compressed sensing (CS)
enables the efficient reconstruction of sparse signals from a small
number of measurements [1]. Here, we apply CS to nonstationary
spectral estimation from a single observed process realization. We
first present a spectral estimator for underspread nonstationary pro-
cesses that is derived from the Gabor coefficients on an undersam-
pled time-frequency (TF) grid. Based on a “TF sparsity” assumption,
we then introduce a CS transformation that achieves a compression
in the measurement space. This is useful if the measurements are
transmitted over a channel or if dedicated measurement devices are
available: one obtains a bit-rate reduction in the first case and a re-
duction of the number of measurement devices in the second.

Let X(t) be a nonstationary, zero-mean, circularly symmet-
ric complex random process with autocorrelation rX(t1, t2) �

E{X(t1)X
∗(t2)} and finite mean energy ĒX �

R
t
rX(t, t) dt (in-

tegrals and sums are from −∞ to ∞ unless noted otherwise). We
wish to estimate the Wigner-Ville spectrum (WVS) [2]

WX(t, f) �

Z
τ

rX

“
t +

τ

2
, t− τ

2

”
e−j2πfτdτ .

The WVS can be viewed as a “time-dependent power spectrum” if
X(t) is an underspread process, i.e., if process components that
are not too close in the TF plane are approximately uncorrelated
[3]. Existing WVS estimators for underspread processes include TF
smoothed versions of the Wigner distribution of an observed real-
ization x(t) of X(t) [2, 4] and estimators using a local cosine basis
expansion of x(t) [5]. However, these estimators do not perform a
compression of the measurements.

Our contributions and the organization of this paper can be sum-
marized as follows. In Section 2, we present a WVS estimator that
involves the signal’s Gabor coefficients on an undersampled TF grid.
In Section 3, we introduce a CS extension of the estimator and dis-
cuss its efficient implementation. A bound on the mean square error
(MSE) of the resulting compressive WVS estimator is provided in
Section 4, and simulation results are presented in Section 5.

This work was supported by the FWF project “Statistical Inference”
(S10603-N13) within the National Research Network SISE and by the
WWTF project SPORTS (MA 07-004).

2. WVS ESTIMATION BASED ON GABOR ANALYSIS

We assume that the nonstationary process X(t) is underspread,
which means that it has small “TF correlation moments” [3, 6]

m
(φ)
X �

R
τ

R
ν

φ(τ, ν) |ĀX(τ, ν)| dτ dνR
τ

R
ν
|ĀX(τ, ν)| dτ dν

,

M
(φ)
X �

R
τ

R
ν

φ2(τ, ν) |ĀX(τ, ν)|2 dτ dνR
τ

R
ν
|ĀX(τ, ν)|2 dτ dν

. (1)

Here, ĀX(τ, ν) �
R

t
rX

`
t+ τ

2
, t− τ

2

´
e−j2πνtdt is the expected am-

biguity function (EAF) of X(t) and φ(τ, ν) is a suitable weighting
function that generally increases for increasing values of delay τ and
frequency lag ν. The EAF is related to the WVS by a 2-D Fourier

transform, i.e., ĀX(τ, ν) =
R

t

R
f

WX(t, f) e−j2π(νt−τf)dtdf . For

an underspread process X(t), ĀX(τ, ν) is well concentrated around

the origin of the (τ, ν) plane. This implies that m
(φ)
X and M

(φ)
X are

small and, also, that the WVS is a smooth function.

2.1. Definition of the Basic WVS Estimator

A WVS estimator that uses Gabor coefficients of the observed re-
alization x(t) is motivated as follows. Since the WVS WX(t, f)
of an underspread process is a smooth function, it can be approxi-

mated by interpolating its samples
˘
WX(kT, lF )

¯
k,l∈Z

taken on an

appropriate TF grid. That is, the TF function

fWX(t, f) �
X

k

X
l

WX(kT, lF ) φ(t− kT, f− lF ) (2)

will approximate WX(t, f) if φ(t, f), T , and F are suitably cho-
sen [6, Theorem 2.35]. In particular, if the EAF ĀX(τ, ν) is zero
for (τ, ν) outside a rectangle [−τmax, τmax] × [−νmax, νmax], the ap-
proximation will be exact provided φ(t, f) is the appropriate 2-D
sinc kernel and the non-aliasing conditions T ≤ 1/(2νmax) and
F ≤ 1/(2τmax) are satisfied.

We now define a WVS estimator cWX(t, f) by replacing the WVS
samples WX(kT, lF ) in (2) with estimates. Here, these estimates
are chosen as the squared magnitudes of the Gabor coefficients [7]
of an observed realization x(t) using T, F as TF grid constants,

c(k,l)
x �

Z
t

x(t) g∗(t− kT ) e−j2πlF tdt ,

with a suitably chosen normalized window g(t) (i.e., ‖g‖2 =1). The
WVS estimator is thus obtained ascWX(t, f) �

X
k

X
l

˛̨
c(k,l)
x

˛̨2
ψ(t− kT, f− lF ) , (3)

where ψ(t, f) may be different from φ(t, f) in (2). We note that for

X(t) underspread, E
˘˛̨

c
(k,l)
X

˛̨2¯
≈ WX(kT, lF ) [6]. Thus,

˛̨
c
(k,l)
x

˛̨2
is (approximately) an unbiased estimator of WX(kT, lF ). An ex-

pression of the MSE of cWX(t, f) will be provided in Section 4.
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2.2. Design of the Basic WVS Estimator

Next, we discuss the choice of the design parameters ψ(t, f), T , F ,

and g(t) involved in cWX(t, f). We assume that ĀX(τ, ν) = 0
for (τ, ν) outside a centered rectangular support region S =
[−τmax, τmax] × [−νmax, νmax], which is supposed known. The TF

correlation spread is defined as sX � |S| = 4τmaxνmax.

Choice of ψ(t, f). Inspired by [4], we design ψ(t, f) such thatcWX(t, f) is approximately a minimum variance unbiased (MVU)

estimator. The MSE ε � E
˘‚‚cWX − WX

‚‚2

2

¯
can be written as

ε = B2 + V with the squared bias B2 �
‚‚E{cWX} −WX

‚‚2

2
and

the variance V � E
˘‚‚cWX − E{cWX}

‚‚2

2

¯
. The MVU design min-

imizes V under the constraint B2 = 0. Closed-form expressions

of B2 and V can be obtained under the following approximations:

(A1) E
˘˛̨

c
(k,l)
X

˛̨2¯
= WX(kT, lF ); (A2) the c

(k,l)
X are uncorrelated.

Both approximations are better satisfied if X(t) is more underspread
(smaller sX ); approximation A2 will also be better satisfied for a
larger value of TF . Using these approximations, one can show

B2 =

Z
τ

Z
ν

|ĀX(τ, ν)|2
˛̨̨̨
1− 1

TF
Ψ(τ, ν)

˛̨̨̨2
dτ dν (4)

V =
1

TF
‖rX‖22 ‖Ψ‖

2
2 , (5)

where Ψ(τ, ν) �
R

t

R
f

ψ(t, f) e−j2π(νt−τf)dtdf . For (5), we as-

sumed X(t) to be Gaussian and used Isserlis’ formula [4]. Note that

rX(t1, t2) and ĀX(τ, ν) are unknown but S is assumed known.

To obtain B2=0 in (4), Ψ(τ, ν) must be equal to TF on S . Then,
V in (5) is minimized if Ψ(τ, ν) = 0 outside S , because this mini-

mizes ‖Ψ‖22. Thus, the 2-D Fourier transform of the approximately
MVU-optimum interpolation function ψMVU(t, f) is obtained as

ΨMVU(τ, ν) =

j
TF , (τ, ν) ∈ S
0 , elsewhere,

(6)

which means that ψMVU(t, f) is a 2-D sinc-type function. The re-

sulting approximate MSE is obtained as (recall that B2 = 0)

ε = V = TF sX ‖rX‖22 . (7)

Choice of T, F . The TF grid constants T and F are constrained
by the non-aliasing conditions T ≤ 1/(2νmax) and F ≤ 1/(2τmax).
These conditions imply TF ≤ 1/sX ; thus, for a strongly under-
spread process (where sX � 1), we may choose TF > 1 (“under-
sampled” TF grid). The MSE expression (7) is minimized by choos-
ing TF as small as possible. However, if T and/or F are too small,

our assumption A2 (uncorrelated c
(k,l)
X ) will be violated. To obtain

small correlation of the c
(k,l)
X , the TF grid geometry defined by T, F

should be matched to the correlation TF geometry of X(t) as char-
acterized by the EAF support S = [−τmax, τmax] × [−νmax, νmax].
This is achieved by letting T/F = τmax/νmax [8].

Choice of g(t). To obtain small correlation of the c
(k,l)
X , the TF

geometry of the Gabor analysis window g(t) should be matched to
the TF grid geometry defined by T, F . This is achieved by letting
Tg/Fg = T/F (= τmax/νmax), where Tg and Fg are the effective
duration and bandwidth, respectively, of g(t).

3. COMPRESSIVE WVS ESTIMATION

In what follows, we assume X(t) to be “TF sparse,” i.e., most WVS
values within the total TF region considered are almost zero. In

many applications, the WVS WX(t, f) is effectively supported in a
few relatively small regions of the TF plane (corresponding to TF lo-

calized signal components) and thus almost zero in the rest of the TF
plane. We do not know which WVS values are effectively nonzero,
only an estimate of their total number is assumed known.

3.1. Definition of the Compressive WVS Estimator

When X(t) is both TF sparse and underspread, it follows from

E
˘˛̨

c
(k,l)
X

˛̨2¯
≈ WX(kT, lF ) that the Gabor coefficients c

(k,l)
X are

sparse with high probability. Let us consider a process X(t) with
a finite duration and a finite effective bandwidth, corresponding to
a rectangular TF region containing N = KL Gabor coefficients

c
(k,l)
X (k = 1, . . . , K, l = 1, . . . , L). We assume that at most

S � N of these Gabor coefficients are nonzero (note that we do
not know which are nonzero). For an observed realization x(t),

let c ∈ C
N be the vector of all N Gabor coeffients c

(k,l)
x , defined,

e.g., as [c]k+(l−1)K = c
(k,l)
x for k = 1, . . . , K and l = 1, . . . , L.

Then c is an S-sparse vector (at most S elements are nonzero), and
CS theory tells us that we can “compress” c by multiplying it by a

suitable matrix Φ ∈ C
M×N with M � N :

z = Φc . (8)

Note that z ∈ C
M contains much fewer entries than c ∈ C

N. If
the compressed dimension M and the “measurement matrix” Φ are
chosen as discussed in Section 3.2, we can recover c from z up to a
small error by means of the convex program (basis pursuit) [9]

ĉ � arg min
c
′

‖c′‖1 subject to Φc′ = z . (9)

From the estimated Gabor coefficients ĉ
(k,l)
x contained in ĉ, we fi-

nally obtain a compressive WVS estimate by substituting the ĉ
(k,l)
x

for the true Gabor coefficients c
(k,l)
x in (3), i.e.,

cWX,CS(t, f) �

KX
k=1

LX
l=1

˛̨
ĉ(k,l)
x

˛̨2
ψMVU(t− kT, f− lF ) . (10)

Note that cWX,CS(t, f) is based on the M �N “compressed mea-
surements” zi = [z]i, i = 1, . . . , M that characterize x(t) as far
as is needed for WVS estimation (similar in spirit to a sufficient
statistic). The zi can be calculated directly from x(t) as inner prod-
ucts zi =

R
t
x(t)w∗

i (t)dt with the measurement functions wi(t) =PK
k=1

PL
l=1 [Φ]∗i,k+(l−1)K g(t − kT ) ej2πlF t. This is practically

interesting if sensor devices implementing inner products are avail-
able; due to the compression, only M�N such devices are needed.

3.2. Choice of Φ

CS theory [9] postulates that the measurement matrix Φ ∈ C
M×N

obeys a “restricted isometry hypothesis.” Let ΦT , T ⊂{1, . . . , N}
be the M×|T | submatrix comprising the columns of Φ indexed by
the elements of the index set T . The S-restricted isometry constant
δS of Φ is defined as the smallest δ>0 such that

(1−δ)‖a‖22 ≤ ‖ΦT a‖22 ≤ (1+ δ)‖a‖22
for all T with |T | ≤ S and all a∈C

|T |. Using δS , the reconstruction
error of the basis pursuit (9) is bounded as follows [9]. For a given
S, assume that the 3S- and 4S-restricted isometry constants of Φ ∈
C

M×N satisfy
δ3S + 3δ4S < 2 . (11)

Let c ∈ C
N (not necessarily sparse) and z = Φc, and let cS ∈ C

N

contain the S components of c with largest absolute values, the re-
maining N−S components of cS being zero (thus, cS is an S-sparse
approximation to c). Then the estimate ĉ in (9) satisfies
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‖ĉ− c‖2 ≤ C
‖c− cS‖1√

S
, (12)

where the constant C depends only on δ3S and δ4S . In particular, if
c is almost S-sparse (i.e., c ≈ cS), then (12) shows that the recon-
struction error ĉ−c is small.

It is shown in [10] that if Φ∈C
M×N is constructed by randomly

selecting M rows from a unitary N × N matrix U and normaliz-
ing the columns, a sufficient condition for (11) to be true with over-
whelming probability1 is

M ≥ C′(ln N)4μ2S . (13)

Here, μ �
√

N maxi,j |Ui,j | (known as the coherence of U) and
C′ is a constant. Thus, we will construct Φ by randomly selecting

M rows from a unitary matrix U ∈ C
N×N. More specifically, we

set Φ = PUD where P ∈ {0, 1}M×N has M entries 1 located ran-
domly with one 1 in each row and at most one 1 in each column, the
remaining entries being zero, and D is a diagonal matrix normaliz-
ing the columns of PU.

3.3. Efficient Implementation

An efficient discrete-time implementation of the CS measurement
equation (8) can be based on the construction

U =
1√
KL

FK ⊗ FL ,

where, e.g., FK is the K × K IDFT matrix, i.e., [FK ]k,l �

ej2π
(k−1)(l−1)

K , and ⊗ denotes the Kronecker product. This con-
struction allows us to adapt an algorithm described in [11] to our
context. Let x denote a discrete-time (sampled) segment of x(t),
obtained with a sufficiently high sampling rate fs, and let the length-
Ng vector g denote the discrete-time version of the (finite-length)
analysis window g(t). We partition x into overlapping blocks x[k],
k = 1, . . . , K of length Ng , such that block x[k + 1] is located
NT = fsT samples after block x[k]. Next, each block x[k] is
multiplied pointwise by the complex conjugate of g and fed into a
pre-alisasing unit that outputs the length-L vector y[k] with entriesˆ
y[k]

˜
m

=
P�Ng/L�

i=0

ˆ
x[k]

˜
m+iL

[g]∗m+iL, m = 1, . . . , L (vector

entries with invalid indices are considered zero).

The Gabor coefficients c
(k,l)
x could be obtained as the length-L

DFT of y[k]. However, we can directly calculate the compressed

measurement vector z = Φc, with Φ = PUD = 1√
M

P(FK⊗FL)

(note that [D]i,i =
p

KL/M ), according to

z =
L√
M

P vec
˘
YFK

¯
. (14)

Here, Y is the L × K matrix whose columns are the vectors y[k],
k = 1, . . . , K and vec{·} stacks all columns of a matrix into a vec-
tor. Computing (14) requires L 1-D DFTs of length K and a random
selection stage (implementing multiplication by P).

4. PERFORMANCE ANALYSIS

MSE of the compressive estimator. We develop an upper bound

on the MSE εCS � E
˘‚‚cWX,CS −WX

‚‚2

2

¯
of the compressive WVS

estimator cWX,CS(t, f) in (10). An expression for the MSE of the

basic WVS estimator cWX(t, f) in (3), ε = E
˘‚‚cWX − WX

‚‚2

2

¯
,

will be obtained as a by-product. We emphasize that we do not
use the approximations A1 and A2 that were used for estima-

1“Overwhelming probability” means that the probability of (11) not being
true decreases exponentially with an increasing number of selected rows, M.

tor design in Section 2.2. We merely assume the following: (i)
ĀX(τ, ν) = 0 for (τ, ν) outside S = [−τmax, τmax]× [−νmax, νmax];
(ii) T ≤ 1/(2νmax) and F ≤ 1/(2τmax) (non-aliasing conditions);
(iii) ψ(t, f) = ψMVU(t, f) (see (6)).

Let us define the excess MSE due to compression as Δε �

E
˘‚‚cWX,CS−cWX

‚‚2

2

¯
. We also define a norm ‖ · ‖

R
for 2-D random

processes Y (t, f) by ‖Y ‖R �

q
E

˘
‖Y ‖22

¯
. Then, applying the

triangle inequality ‖Y1 + Y2‖R
≤ ‖Y1‖R

+ ‖Y2‖R
to Y1(t, f) =cWX,CS(t, f) − cWX(t, f) and Y2(t, f) = cWX(t, f) − WX(t, f),

we obtain the upper bound
p

εCS ≤
√

Δε +
√

ε or equivalently

εCS ≤ (
√

ε +
√

Δε)2 . (15)

The MSEs ε and Δε will be considered next.

MSE of the basic estimator. It is possible to show the expression

ε = ‖rX‖22
»
M

(φ)
X + TF sX

X
k

X
l

M
(φk,l)

X sinc(2kνmaxT )

· sinc(2lτmaxF )

–
, (16)

where φ(τ, ν) = |1−Ag(τ, ν)| and φk,l(τ, ν) = |Ag(τ − kT, ν −
lF )|, with Ag(τ, ν) �

R
t
g

`
t + τ

2

´
g∗`

t− τ
2

´
e−j2πνtdt being the

ambiguity function of g(t), and sinc(x) � sin(πx)/(πx). Thus, ε
will be smaller for a process X(t) that is more underspread (smaller

M
(φ)
X and M

(φk,l)

X , (k, l) �= (0, 0), see (1)).

Excess MSE due to compression. Let us define the TF sparsity
profile

σX(S) �
1

ĒX

˛̨̨̨
˛ X
(k,l)∈GS

WX(kT, lF )

˛̨̨̨
˛ ,

where S ∈ N is a nominal sparsity and GS is the set of (k, l) for

which |WX(kT, lF )| is not among the S largest elements of the set˘
|WX(kT, lF )|

¯
(k,l)∈Z2 . Assuming that Φ satisfies (11) for some

S, so that (12) holds, one can show (using a CS error bound in [9])

Δε ≤ 16 α(S)Ē2
X

"
4 TF α(S)

ˆ
σ2

X(S) +
`
(N−S)sX m

(φ)
X

´2˜
+ 2

ˆ
σX(S) + (N−S)sX m

(φ)
X

˜
(1 + NTF sX m

(φ)
X )

+
α(S)+1

Ē2
X

X
(k,l)∈Z2\(0,0)

M
(φk,l)

X

#
, (17)

with α(S) � N−S
S

C2 and φ(τ, ν), φk,l(τ, ν) as before. For a larger

S, σX(S) tends to be smaller but the number M of measurements
could be higher according to (13). Furthermore, the bound (17) will

be smaller for a process that is more underspread (smaller M
(φ)
X ,

M
(φk,l)

X for (k, l) �= (0, 0), sX , m
(φ)
X ) and that has a better effective

TF sparsity (smaller σX(S)). Using the approximations A1 and A2,

(17) simplifies to Δε ≤ 32α(S)Ē2
X

ˆ
TF α(S)σ2

X(S) + σX(S)
˜
.

5. SIMULATION RESULTS

Using the TF synthesis method of [12], we generated 1000 realiza-
tions of a discrete-time random process of length 256 whose WVS
is shown in Fig. 1(a). From the TF sparsity profile and EAF plot-
ted in Fig. 2, we conclude that the process is only moderately TF
sparse and underspread. In Fig. 1(b)–(e), we depict the results of the
following WVS estimators averaged over the 1000 realizations: the
basic (noncompressive) Gabor-based WVS estimator (3), the com-
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f ff f f

t tt t t

(a) (b) (c) (d) (e)

Fig. 1. Average performance of WVS estimators: (a) WVS of a discrete-time process of length 256, (b)–(e) averaged WVS estimates obtained
with (b) the basic/noncompressive estimator (compression factor N/M =1) (c) the compressive estimator with N/M =2, (d) the compressive
estimator with N/M =5, and (e) the conventional estimator (smoothed Wigner distribution [4]).

pressive Gabor-based WVS estimator (10) for compression factors
N/M = 2 and 5, and a conventional WVS estimator (smoothed
Wigner distribution with MVU-type smoothing function [4]). For
the basic Gabor-based estimator, the number of Gabor coefficients
was chosen as N = KL = 112 (K = 8, L = 14), correspond-
ing to TF = 1.125. It is seen that, on average, the basic Gabor-
based estimator performs equally well as the conventional estimator,
even though it uses only 112 Gabor coefficients on an undersam-
pled grid. The result of the compressive estimator with compression
factor N/M = 2 (using 56 Gabor coefficients) is practically equal
to the results of the basic and conventional estimators, while small
deviations are observed for N/M = 5 (22 Gabor coefficients).

Fig. 3 shows the empirical normalized MSE (NMSE) of the com-
pressive estimator (10) versus the compression factor N/M , for
TF = 1.125. The NMSE of the conventional estimator (which, of
course, does not depend on N/M ) is shown as a reference. It is seen
that the performance loss of the compressive estimator compared to
the basic (i.e., N/M = 1) and conventional estimators is small up
to about N/M = 3 but increases beyond that point. The NMSE
decrease for N/M between 1 and 2 may be due to a regularization
effect of the CS recovery stage (such an effect is reported in [13]
in a different context). We did not plot the MSE bound (15)–(17)
because it is much larger than the empirical MSE (this lack of tight-
ness is mostly due to the notoriously loose [10] CS error bound used
in (17) and the moderate TF sparsity of our process). However, the
bound is still valuable from a theoretical viewpoint.

6. CONCLUSION

We presented a “compressive” WVS estimator for TF sparse, un-
derspread, nonstationary random processes. Our estimator is based
on the signal’s Gabor coefficients on an undersampled TF grid and
uses a CS transformation to reduce the number of measurements.
The measurements are inner products of the signal with randomly
chosen linear combinations of Gabor functions; they can be com-
puted efficiently by means of fast Fourier transforms. We provided a
bound on the mean square error of the compressive WVS estimator
and simulation results illustrating the estimator’s performance.
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Fig. 2. (a) TF sparsity profile σX(S), (b) EAF magnitude

|ĀX(τ, ν)| (the dotted reference rectangle has area 1).
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N/M

Fig. 3. Empirical NMSE of the compressive WVS estimator versus
the compression factor N/M , for TF = 1.125. The dotted horizon-
tal line indicates the NMSE of the conventional estimator.
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