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ABSTRACT

It has been known for a while that l1-norm relaxation can in
certain cases solve an under-determined system of linear equa-
tions. Recently, [5, 10] proved (in a large dimensional and sta-
tistical context) that if the number of equations (measurements in
the compressed sensing terminology) in the system is proportional
to the length of the unknown vector then there is a sparsity (num-
ber of non-zero elements of the unknown vector) also proportional
to the length of the unknown vector such that l1-norm relaxation
succeeds in solving the system. In this paper we determine sharp
lower bounds on the values of allowable sparsity for any given
number (proportional to the length of the unknown vector) of equa-
tions for the case of the so-called block-sparse unknown vectors
considered in [25].

Index Terms: compressed sensing, l1-optimization, block-sparse
1. INTRODUCTION

Standard compressed sensing assumes solving an under-determined
system of equation (more on compressed sensing the interested
reader can find in [13, 5, 23] and references therein)

Ax = y (1)
where A is anM × N measurement matrix, y is anM × 1 mea-
surement vector, and x is an N × 1 unknown K-sparse vector
(K-sparse will mean that the number of non-zero entries of x

is not greater than K; more on the recovery of the so-called K-
approximately sparse unknown vectors can be found in [8], [26]).
A particular way of solving (1) which will be the subject of this
paper is l1-norm relaxation [5]. (More on different algorithms the
interested reader can find in excellent references [1, 4, 20, 18, 19].)
l1-norm relaxation proposes solving the following problem

min ‖x‖1

subject to Ax = y. (2)
In a series of works [5, 10, 24, 26] the authors were able to show
that if the elements of the matrix A are drawn according to certain
probability distributions and if M = αN (where α is a constant)
then there is a constant β = K

N
such that the solutions of (1) and

(2) coincide. The best known values of the constant (threshold) β
for the l1-norm relaxation are those obtained in [10] ([11] in the
context of the so-called signed vectors x).

What we described above is the standard compressed sensing
setup. In this paper we will be interested in the so-called block-
sparse compressed sensing problems [25, 20, 14, 2] (more on a
related group of problems and various application the interested
reader can find in [28, 3, 6, 9, 27, 29] and references therein). To

introduce block-sparse signals and facilitate the subsequent expo-
sition we will assume that integers N and d are chosen such that
n = N

d
is an integer and it represents the total number of blocks

that x consists of. Clearly d is the length of each block. Further-
more, we will assume that m = M

d
is an integer as well and that

Xi = x(i−1)d+1:id, 1 ≤ i ≤ n are the n blocks of x. Then we
will call any signal x k-block-sparse if its at most k = K

d
blocks

Xi are non-zero. Since k-block-sparse signals are K-sparse one
could then use (2) to recover the solution of (1). While this is pos-
sible, it clearly uses the block structure of x in no way. To exploit
the block structure of x in [25] the following combination of l2
and l1 optimizations was proposed

min
nX

i=1

‖x(i−1)d+1:id‖2

subject to Ax = y. (3)

Extensive simulations in [25] demonstrated that as d grows the
algorithm in (3) significantly outperforms standard l1. The fol-
lowing was shown in [25] as well: let A be an M × N matrix
with a basis of null-space comprised of i.i.d. Gaussian elements; if
α = M

N
→ 1 then there is a constant d such that all k-block-sparse

signals x with sparsity K ≤ βN, β → 1
2
can be recovered with

overwhelming probability by solving (3). The precise relation be-
tween d and how fast α −→ 1 and β −→ 1

2
was quantified in [25]

as well. In the present paper we provide results of a similar flavor
for the entire range of α, i.e. for 0 ≤ α ≤ 1. More precisely,
for any given constant 0 ≤ α ≤ 1 we will determine a constant
β = K

N
and a constant d such that (3) recovers any k-block-sparse

signal with sparsity less then K. Our analysis will be a combina-
tion of results from [25], [24], and [16]. In the following section
we briefly recall on a key ingredient of the analysis from [25] that
we will reuse in this paper.

2. NULL-SPACE CHARACTERIZATION FOR
BLOCK-SPARSE SIGNALS

In this section we introduce a necessary and sufficient condition
on the measurement matrix A so that the solutions of (2) and (3)
coincide for all k-block-sparse x. (see [25, 12, 17, 15, 30, 26] for
variations of this result). Throughout the paper we set K to be the
set of all subsets of size k of {1, 2, . . . , n}; also if K ⊂ K then
K̄ = {1, 2, . . . , n} \ K.

Theorem 1 ([25]) Assume that A is a dm×dnmeasurement ma-
trix, y = Ax and x is k-block-sparse. Then the solutions of (3)
and (1) coinside if and only if for all nonzero w ∈ Rdn where
Aw = 0 and allK ∈ K
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X
i∈K

||Wi||2 <
X
i∈K̄

||Wi||2 (4)

whereWi = (w(i−1)d+1,w(i−1)d+2, . . . ,wid), i = 1, 2, . . . , n.

3. PROBABILISTIC ANALYSIS OF THE NULL-SPACE
CHARACTERIZATION

In this section we probabilistically analyze the validity of (4). We
will assume that the matrix A has a basis of the null-space dis-
tributed uniformly in the Grassmanian. Under this assumption for
any constant α = m

n
(0 ≤ α ≤ 1) we will determine a constant

β = k
m
such that (4) holds with overwhelming probability. In the

standard case d = 1 (when there is no effect of block-sparsity and
optimizations (2) and (3) are equivalent) results of this type were
already computed in [5, 10, 26, 24]. Throughout the analysis we
will make use of a few crucial observations of [24]. The first one is
in fact a brilliant result of Gordon related to Grassmann manifolds.
Theorem 2 ([16]) Let S be a subset of the unit Euclidean sphere
Sdn−1 in Rdn. Let Y be a random (dn − dk)-dimensional sub-
space of Rdn, distributed uniformly in the Grassmanian with re-
spect to the Haar measure. Let

w(S) = E sup
w∈S

|gw| (5)

where g is a random row vector in Rdn with i.i.d. N (0, 1) com-
ponents. Assume that w(S) <

√
dm − 1

4
√

dm
. Then

P (Y ∩ S = 0) > 1 − 2.5e−

„√
dm− 1

4
√

dm
−w(S)

«2

18 . (6)
Remark: Gordon’s original constant 3.5 was substituted by 2.5 in
[24]. Both constants are fine for our subsequent analysis.

As masterly noted in [24] Theorem 2 can be used in proba-
bilistic analysis of (4). Namely, let S in (5) be

S = {w ∈ Sdn−1|∃K ∈ K,
X
i∈K

||Wi||2 ≥
X
i∈K̄

||Wi||2} (7)

whereWi = (w(i−1)d+1,w(i−1)d+2, . . . , wid)
T , i = 1, 2, . . . , n.

Let Y be an d(n−m) dimensional subspace ofRdn uniformly dis-
tributed in Grassmanian. Furthermore, let Y be the null-space of
A. Then as long as w(S) <

√
dm − 1

4
√

dm
, Y will miss S (i.e.

(4) will be satisfied) with probability no smaller than the one given
in (6). More precisely, if α = m

n
is a constant (the case of in-

terest in this paper), n, m are large, and w(S) is smaller than but
proportional to

√
dm then P (Y ∩ S = 0) −→ 1. This in turn is

equivalent to having
P (∀w ∈ Rdn|Aw = 0,∀K ∈ K

X
i∈K

||Wi||2 <
X
i∈K̄

||Wi||2) −→ 1

which according to Theorem 1 means that solutions of (3) and (2)
coincide with probability 1. For any given value of α ∈ (0, 1) a
threshold value of β can be determined as a maximum β such that
w(S) <

√
dm − 1

4
√

dm
. Since computing w(S) does not appear

easy we introduce a set D in the following way (see [24])

D = conv{w ∈ Sdn−1||{i ∈ {1, 2, . . . , n}|Wi �= 0}| ≤ k}
(8)

where 0 is a vector of d zeros. Now, if we can compute an upper
bound on w(D) and show that S ⊂ ξD (for some ξ > 0) we will
effectively be able to establish an upper bound onw(S). Equalling
that potential upper bound with

√
dm − 1

4
√

dm
would give us a

way to compute thresholds for β. In Subsection 3.1 we compute
an upper bound on w(D) while in Subsection 3.2 we determine a
ξ such that S ⊂ ξD.

3.1. Upper-bounding of w(D)

By definition given in (5) we have

w(D) = E sup
w∈D

|gw|. (9)

Let Gi = (g(i−1)d+1,g(i−1)d+2, . . . ,gid), i = 1, 2, . . . , n. For
a given g the function |gw| is convex in w and hence achieves
the maximum at the extreme points of D (by the definition D is
a convex set). Also, by the definition of the set D given in (8) its
extreme points can have at most k non-zero vectors (blocks) Wi.
Therefore we have

w(D) = E sup
w∈D

|gw| = E sup
w∈D

|
nX

i=1

GiWi| = E sup
|J|=k

 X
i∈J

‖Gi‖2
2

! 1
2

where J ⊂ {1, 2, . . . , n}. Using the Holder’s inequality trick
from [24] one for p > 1 obtains

w(D) = E sup
|J|=k

 X
i∈J

‖Gi‖2
2

! 1
2

≤ E(
X
|J|=k

(
X
i∈J

‖Gi‖2
2)

p
2 )

1
p

≤
 

n

k

! 1
p

(E(
X
i∈J

‖Gi‖2
2)

p
2 )

1
p ≤

“en

k

” k
p

(E(
X
i∈J

‖Gi‖2
2)

p
2 )

1
p .

The second inequality follows by the concavity of the function
()

1
p . As it will soon be clear this inequality is the key point for

the success of our analysis. Namely, one should note that the com-
binatorial term

`
n

k

´ 1
p does not change as d grows. The reason is

exactly the structure of the sparse signal, i.e. the fact that the outer
sum on the right side of the first inequality runs over all subsets
of k blocks Wi rather than over all subsets od dk elements of
w. Since Gi is d-dimensional vector with N (0, 1) i.i.d. com-
ponents E(

P
i∈J

‖Gi‖2
2)

p
2 is the p-th central moment of a chi-

distributed random variable with dk degrees of freedom. Hence
E(
P

i∈J
‖Gi‖2

2)
p
2 = (2

p
2

Γ(
p+dk

2
)

Γ( dk
2

)
)

1
p . The Stirling’s formula and

bounding the gamma functions similarly as in [24] give

w(D) ≤
“en

k

” k
p

„
p + dk

e

« 1
2 “

1 +
p

dk

” dk−1
2p

e
1

12pdk . (10)

Let p = dεk, where ε > 0 is arbitrarily small. Then from (10) we
have

w(D) ≤ (dεk + dk)
1
2

2
4e−

1
2 (1 + d(ε−1))

d(1−ε)

2 e
1

12pdk`
β

e

´d−ε

(1 + d(ε−1))
1

2dεk

3
5

= (dk)
1
2

2
4 e−

1
2 (1 + d(ε−1))

d(1−ε)

2 e
1

12pdk`
β

e

´d−ε

(1 + d(ε−1))(
1

2dεk
− 1

2 )

3
5 . (11)

For any arbitrarily small ε > 0 one can always find a large constant
d such that2

4 e−
1
2 (1 + d(ε−1))

d(1−ε)

2 e
1

12pdk`
β

e

´d−ε

(1 + d(ε−1))(
1

2dεk
− 1

2 )

3
5

2

< 1 + δ

and δ > 0 is arbitrarily small. Term (1+d(ε−1))
d(1−ε)

2

e
1
2

→ 1

for a fixed small ε and sufficiently large d and the terms e
1

12pdk ,`
β

e

´d−ε

, and (1 + d(ε−1))(
1

2dεk
− 1

2 ) clearly go to 1 for a fixed
small ε and sufficiently large d. Therefore from (11) we have that
for any arbitrarily small δ > 0 there is a sufficiently large d such
that

w(D)2 ≤ dk(1 + δ). (12)
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3.2. Computing ξ

In this subsection we compute a ξ such that S ⊂ ξD. As earlier

D = conv{w ∈ Sdn−1||{i ∈ {1, 2, . . . , n}|Wi �= 0}| ≤ k}
S = {w ∈ Sdn−1|∃K ∈ K,

X
i∈K

||Wi||2 ≥
X
i∈K̄

||Wi||2} (13)

and Wi = (w(i−1)d+1,w(i−1)d+2, . . . ,wid), i = 1, 2, . . . , n.
Clearly, w = (W1,W2, . . . ,Wn)T . Let w∗ be a vector ob-
tained as a permutation of the blocks of w so that their norms-2
form a non-increasing sequence. Thenw∗ = (W∗

1 ,W∗
2 , . . . ,W∗

n),

S = {w ∈ Sn−1|
kX

i=1

‖w∗(i−1)d+1:id‖2 ≥
nX

i=k+1

‖w∗(i−1)d+1:id‖2}. (14)

(Notation: w∗(i−1)d+1:id = (w∗(i−1)d+1, w
∗
(i−1)d+2, . . . ,w

∗
id).)

Since D is a convex set there will be a norm denoted ‖.‖D whose
unit ball in Rn isD. It easily follows that ξ can be computed as

ξ = max
w∈S

‖w‖D . (15)

To simplify the analysis we now assume that γ = β−1 = n
k
is an

integer and γ ≥ 3. We also break the analysis into two cases.

3.2.1. Case 1: w ∈ S, ‖w∗1:dk‖2 ≤
q

γ−1
γ

Using (14) and the quadratic-arithmetic mean inequalityr
γ − 1

γ
≥ ‖w∗1:dk‖2 ≥

Pk

i=1 ‖W∗
i ‖2√

k
≥
Pn

i=k+1 ‖W∗
i ‖2√

k
. (16)

Since ‖W∗
1‖2 ≥ ‖W∗

2‖2 ≥, . . . ,≥ ‖W∗
k‖2 it follows that ‖W∗

k‖2 ≤
1√
k

q
γ−1

γ
. ‖W∗

k‖2 ≥ ‖W∗
k+1‖2 ≥, . . . ,≥ ‖W∗

n‖2 implies

1√
k

r
γ − 1

γ
≥ ‖W∗

k+1‖2 ≥ ‖W∗
k+2‖2 ≥, . . . ,≥ ‖W∗

n‖2. (17)

Similarly to [24] the extreme points of the intersection of the re-
gions given in (16) and (17) (we view the intersection only for
w∗dk+1:n part of w∗, i.e. for this case we assume below that
w∗dk+1:n is padded with zeros to full length dn) are points that
have k non-zero blocks-each with norm-2 equal to 1√

k

q
γ−1

γ
. To

see this let w∗ be a point such that (16) and (17) are satisfied.
Then, (n−k)-dimensional point (‖W∗

k+1‖2, ‖W∗
2‖2, . . . , ‖W∗

n‖2)

is a convex combination, sayConv, of vectors π(1), π(2), . . . , π((n−k
k )),

where each π(j) is either zero-vector or an (n − k)-dimensional
vector with k-non-zero components equal to 1√

k

q
γ−1

γ
(see [24]).

LetΠ(j) be a d(n− k)-dimensional vector obtained by expanding
π(j) in the following way: Π(j)

(i−k−1)d+1:(i−k)d = π
(j)
i−k

w
∗
(i−1)d+1:id

‖w∗
(i−1)d+1:id

‖2 ,

(k + 1) ≤ i ≤ n (π(j)
i−k is the (i − k)-th component of π(j)

and Π
(j)

(i−k−1)d+1:(i−k)d is the (i − k)-th block of Π(j)). Then
it easily follows that w∗dk+1:n is the convex combination Conv of
Π(j), 1 ≤ j ≤ `

n−k

k

´
(each Π(j) is either zero-vector or has k

non-zero blocks-each of norm-2 equal to 1√
k

q
γ−1

γ
). Ignoring

zero-vector, one therefore concludes that the extreme points in-
deed have k non-zero blocks-each of norm-2 equal to 1√

k

q
γ−1

γ

(note that if w∗dk+1:n is in the region then −w∗dk+1:n is as well,
hence zero-vector is not an extreme point).

D is block symmetric andw∗ is a block permutatedw, hence
‖w‖D = ‖w∗‖D ≤ ‖(w∗1:dk, 0dk+1:dn)‖D+‖(01:dk, w∗dk+1:n)‖D.
The maximum of ‖(01:dk,w∗dk+1:n)‖D is achieved at the extreme
points of the region defined by (16) and (17). Let z be the extreme

point where ‖(01:dk,w∗dk+1:n)‖D is maximized. Since z has no
more than k non-zero blocks ‖z‖D = ‖z‖2 we then have

‖(01:dk, w∗dk+1:n)‖D ≤ ‖z‖D = ‖z‖2 =

r
γ − 1

γ

‖(w∗1:dk, 0dk+1:dn)‖D = ‖(w∗1:dk, 0dk+1:dn)‖2 ≤
r

γ − 1

γ
. (18)

Finally using (18) we obtain

max
w∈S,‖w∗

1:dk
‖2≤

q
γ−1

γ

‖w‖D ≤ 2

r
γ − 1

γ
. (19)

From (19) we easily have„
w ∈ S, ‖w∗1:dk‖2 ≤

r
γ − 1

γ

«
=⇒ w ∈ 2

r
γ − 1

γ
D. (20)

3.2.2. Case 2: w ∈ S, ‖w∗1:dk‖2 ≥
q

γ−1
γ

Let D1 =
n
w ∈ S|Pγ

i=1 ‖w∗(i−1)dk:idk‖2 ≤ 2
q

γ−1
γ

o
. Also,

let φ(i), 1 ≤ i ≤ γ be a vector of length n such that only its coor-
dinates (i−1)dk+1, (i−1)dk+2, . . . , idk are non-zero. Further-
more, let φ(i)

(i−1)dk+1:idk
=

w
∗
(i−1)dk+1:idk

‖w∗
(i−1)dk+1:idk

‖2 , 1 ≤ i ≤ γ. Then
we have that each element of D1 can be represented as a linear
combination 1

2
q

γ−1
γ

(‖w∗1:dk‖2, ‖w∗dk+1:2dk‖2, . . . , ‖w∗n−dk+1:n‖2)

of γ vertices 2
q

γ−1
γ

(φ(1), φ(2), . . . , φ(γ)) of the convex set 2
q

γ−1
γ

D.
Since

Pγ

i=1
1

2
q

γ−1
γ

(‖w∗(i−1)dk+1:idk‖2) ≤ 1 by the definition of

D1, it then follows that D1 ⊂ 2
q

γ−1
γ

D.
We will now show that if w ∈ S and ‖w∗1:dk‖2 ≥

q
γ−1

γ

then w ∈ D1. The quadratic-arithmetic mean inequality gives
γX

i=1

‖w∗(i−1)dk:idk‖2 = ‖w∗1:dk‖2 +

γX
i=2

‖w∗(i−1)dk:idk‖2

≤ ‖w∗1:dk‖2 +
p

γ − 1
nX

i=dk+1

(w∗i )2. (21)

Since w ∈ S, by definition ‖w‖2 = ‖w∗‖2 = 1. ThereforePn

i=dk+1(w
∗
i )2 =

p
1 − ‖w∗1:dk‖2. Then from (21) we obtain

γX
i=1

‖w∗(i−1)dk:idk‖2 ≤ ‖w∗1:dk‖2+
p

γ − 1
q

1 − ‖w∗1:dk‖2. (22)

It is not that difficult to check that for ‖w∗1:dk‖2 ≥
q

γ−1
γ
the

function on the right side of (22) is non-increasing in ‖w∗1:dk‖2.
Hence we finally haveγX

i=1

‖w∗(i−1)dk:idk‖2 ≤ ‖w∗1:dk‖2 +
p

γ − 1
q

1 − ‖w∗1:dk‖2

≤
r

γ − 1

γ
+
p

γ − 1

r
1 − γ − 1

γ
= 2

r
γ − 1

γ
(23)

which guarantees that if w ∈ S and ‖w∗1:dk‖2 ≥
q

γ−1
γ
then

w ∈ D1 as well. SinceD1 ∈ 2
q

γ−1
γ

D we have„
w ∈ S, ‖w∗1:dk‖2 ≥

r
γ − 1

γ

«
=⇒ w ∈ 2

r
γ − 1

γ
D. (24)

We can then formulate the following lemma.
Lemma 1 Let S andD be as defined in (13) and (14). Let β−1 =
n
k
be an integer greater than 2. Then

S ⊂ 2
p

1 − βD. (25)
Proof 1 Follows by combing (20), (24), and recalling on the defi-
nition of γ introduced below (15).
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Theorem 3 Let A be a dm × dn measurement matrix in (1) with
the null-space uniformly distributed in the Grassmanian. Let the
unknown x in (1) be k-block-sparse with block lengths d as defined
above (3). Let k, m,n be large and let α = m

n
and β = k

n
be

constants independent ofm and n. If α and β satisfy (26) and β−1

is an integer then there will always be a sufficiently large constant
d such that the solutions of (1) and (3) coincide with overwhelming
probability.

4(1 − β)β ≤ α (26)
Proof 2 Follows by combining (25), (12), and the results of Theo-
rem 2.
The values of thresholds for β obtained based on (26) are shown
on Figure 1. For β−1 = 3, 4, 5, . . . an α is obtained from (26).
Then the remaining points are interpolated by the virtue that the
threshold function is non-decreasing. The staircase style of the
plot comes from the assumption that β−1 is an integer. The entire
analysis can be done without this assumption but it becomes sig-
nificantly more cumbersome and the final results would almost be
no different. The bounds on the value of w(S) obtained by using
the augmented set D are tight. Therefore, we believe that if one
is to get better results for thresholds a modified version of the set
D should be used. Also, one should note that our results deter-
mine what is called strong threshold for β (i.e. (3) succeeds with
overwhelming probability in solving (1) for all βn-block-sparse
x). Figure 1 also contains a straight line 1

2
which is theoretically

the best value (for strong threshold) for β

α
that one can hope for no

matter what algorithm is used.
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β/
α

Sparsity thresholds−−−Block−sparse signals, l
2
/l

1
−algorithm

Present paper
Theoretical upper−bound

Fig. 1. Block-sparsity thresholds
We should finally make an important observation. Carefully

following our derivation, one could note that our result made crit-
ical use of an excellent work [16] which on the other hand mas-
sively relied on phenomenal results [21, 7] related to the estimates
of the normal tail distributions of Lipshitz functions. In a very re-
cent work related to the matrix-rank optimization the authors in
[22] successfully applied results of [21, 7] directly without rely-
ing on the Gordon’s escape through a mesh theorem. It will be
interesting to see if our work can be improved as well by directly
applying the results of [21, 7].

4. SUMMARY
In this paper we analyzed recovery of the block-sparse signals.
We explicitly evaluated lower bounds on the values of the sparsity
of the block-sparse signals that a polynomial l2/l1 algorithm can
recover with overwhelming probability.
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