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ABSTRACT

It is well known that compressed sensing problems reduce to
solving large under-determined systems of equations. If we choose
the elements of the compressed measurement matrix according to
some appropriate probability distribution and if the signal is sparse
enough then the l1 optimization can recover it with overwhelming
probability (see, e.g. [4], [6], [7]). In fact, [4], [6], [7] establish
(in a statistical context) that if the number of measurements is pro-
portional to the length of the signal then there is a sparsity of the
unknown signal proportional to its length for which the success
of the l1 optimization is guaranteed. In this paper we introduce a
novel, very simple technique for proving this fact. Furthermore,
in addition to being very simple the new technique provides very
good values for proportionality constants. In some cases, the pre-
sented analysis, although very simple, provides the best currently
known values for the proportionality constants.

Index Terms: compressed sensing, l1-optimization

1. INTRODUCTION
In this paper we are interested in the mathematical background
of certain compressed sensing problems (more on the compressed
sensing problems and their importance the interested reader can
find in excellent references [12, 4, 15]). These problems are very
easy to pose and very difficult to solve. Namely, we would like to
find x such that

Ax = y (1)
where A is an m × n measurement matrix and y is an m × 1
measurement vector. In usual compressed sensing context x is
an n × 1 unknown k-sparse vector (this means that x has only k

nonzero components; more on the so-called approximately sparse
signals the interested reader can find in e.g. [5, 20]). In the rest of
the paper we will further assume that k = βn andm = αn where
α and β are absolute constants independent of n.

A particular way of solving (1) which recently generated a
large amount of research is called l1-optimization [4] (more on
different solving algorithms the interested reader can find in [1,
22, 17, 16, 14]). The basic l1-optimization algorithm finds x in (1)
by solving the following problem

min ‖x‖1

subject to Ax = y. (2)

Quite remarkably, in [4] the authors were able to show that if α

and n are given, the matrix A is given and satisfies a special prop-
erty called the restricted isometry property (RIP) (more on whenA

satisfies the RIP condition the interested reader can find in [4, 2]),
then any unknown vector x with no more than k = βn (β is an ab-
solute constant dependent on α and explicitly calculated in [4] to
which we will refer throughout the paper as threshold) non-zero el-
ements can be recovered by solving (2). As expected, this assumes
that y was in fact generated by that x and given to us. The case
when the available measurements are noisy versions of y is also of
interest [4, 3, 23]. Although that case is not the primary concern of
the present paper we mention in passing that the recent popularity
of l1-optimization in compressed sensing is significantly due to its
robustness with respect to noisy measurements.

Instead of characterizing the m × n matrix A through the
RIP condition, in [6, 7] the author establishes that solutions of
(2) and (1) conincide if and only if the projection of the regular
n-dimensional cross-polytope by matrixA is a k-neighborly poly-
tope. For A chosen as a random ortho-projector the precise rela-
tion betweenm and k so that the solutions of (2) and (1) coincide
is characterized in [7, 6] as well.

In (1) one can further restrict x to have only non-negative val-
ues (in the rest of the paper we refer to the vector x with all non-
negative components as non-negative vector). Instead of (2) one
can then use the following, more restrictive, optimization problem

min ‖x‖1

subject to Ax = y

xi ≥ 0, 0 ≤ i ≤ n (3)
to recover x. As expected, adding positivity constraints helps (3)
to be even more successful than (2) in recovering x. A set of at-
tainable values for strong and weak thresholds (more on the strong
and weak threshold the interested reader can find in [7, 8]) for
the success of (3) in recovering non-negative x was computed in
[9, 8, 10] for different types of statistical matrices A.

In this paper we will provide a technique for computing the
thresholds that is different from those in [4, 6, 9, 10] but is rather
simple. Our technique will massively utilize the structure of the
null-space of the matrix A.

2. NULL-SPACE CHARACTERIZATIONS
The following two theorems provide the null-space characteriza-
tions of the matrix A that guarantee success of l1 optimizations
(2) and (3) in recovering general and non-negative x, respectively.
(for similar characterizations see also [11, 24, 14]).
Theorem 1 (Non-negative x) Assume that an m × n measure-
ment matrixA is given. Let x be a k-sparse vector whose non-zero
components are positive. Further, assume that y = Ax and that
w is an n × 1 vector. Let K be any subset of {1, 2, . . . , n} such
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that |K| = k and letKi denote the i-th element ofK. Further, let
K̄ = {1, 2, . . . , n} \ K. Then (3) will produce the solution of (1)
if

∀K and (∀w ∈ Rn|Aw = 0,wK̄i
≥ 0, 1 ≤ i ≤ n − k),

−Pk
i=1 wKi <

Pn−k
i=1 |wK̄i

|. (4)
Proof 1 Suppose that the vectors from the null-space of the matrix
A satisfy (4). Let x̂ and x be the solutions of (3) and (1), respec-
tively. Further, assume that x̂ is different from x, i.e. assume that
x̂ �= x. Set w = x̂ − x. Since Ax̂ − Ax = 0 we have Aw = 0.
The following line of inequalities is easy to establish as well

kX
i=1

xKi = ‖x‖1 ≥ ‖x̂‖1 = ‖x+w‖1 = ‖xK+wK‖1+‖xK̄+wK̄‖1

≥
kX

i=1

(xKi+wKi)+‖xK̄+wK̄‖1 =
kX

i=1

xKi+
kX

i=1

wKi+‖wK̄‖1.

Connecting beginning and end we have −Pk
i=1 wKi ≥ ‖wK̄‖1.

However this contradicts (4). Therefore we have x = x̂. This
concludes the proof.
Theorem 2 (General x) Assume the setup of Theorem 1. Addi-
tionally, assume that non-zero components of x can be both pos-
itive or negative. Let further 1 be a 2k × k sign matrix. Each
element of the matrix 1 is either 1 or −1 and there are no two
rows that are identical. Let 1j be the j-th row of the matrix 1.
Then (2) will produce the solution of (1) if

(∀w ∈ Rn|Aw = 0) and ∀K, j −1jwK <

n−kX
i=1

|wK̄i
|. (5)

Proof 2 Follows from the proof of Theorem 1 after considering all
possible combinations of signs that the components of xK can take
and realizing that now wK̄i

, 1 ≤ i ≤ n − k, does not need to be
non-negative.
In the rest of the paper we compute the values of α and β so that
for certain random matricesA (4) and (5) hold with overwhelming
probability.

3. PROBABILISTIC ANALYSIS
In the first part of this section we consider random matrices A

that have a basis of the null-space comprised of i.i.d. zero-mean
Gaussian elements (we refer to these matrices as null-gaussian). In
the second part of this section we readily generalize the results to
random matrices A that have a basis of the null-space comprised
of i.i.d. Bernoulli elements (we refer to these matrices as null-
bernoulli).
3.1. Gaussian null-space
We focus on deriving the strong thresholds for non-negative case.
The results for weak thresholds/general x will easily follow.

Assume that we are given an n× (n−m)matrix Z. Let Zi be
the i-th row ofZ and letZij be the i, j-th element ofZ. Further, let
Zij be i.i.d. zero-mean unit-variance Gaussian random variables.
Assume that A is a matrix such that Z is a basis of its null space.
It then holds AZ = 0. Furthermore, any n × 1 vector w from
the null-space of A can be represented as Zv where v ∈ Rn−m.
Further, let Iv denote the event −Pk

i=1 ZKiv ≤ Pn−k
i=1 |ZK̄i

v|
and letCK,v denote the polyhedral cone ZK̄i

v ≥ 0, 1 ≤ i ≤ (n−
k). Essentially, for any given constant α = m

n
we will compute a

constant β = k
n
such that

lim
n→∞

P (Iv ∀K ⊂ {1, 2, . . . , n}, |K| = k,∀v ∈ CK,v) = 1. (6)
In order to show that (6) holds for certain values of α and β we
will actually show that

lim
n→∞

Pf = 0, (7)

Pf = P (∃K ⊂ {1, 2, . . . , n}, |K| = k, ∃v ∈ CK,v s. t. Īv)
and Īv denotes the complement of Iv, i.e. it denotes the event
−Pk

i=1 ZKiv ≥Pn−k
i=1 |ZK̄i

v|. In what follows we will repeat-
edly use Pf . Our goal will always be to show that limn→∞ Pf =
0. Now, using the union bound we can write

Pf ≤
(n

k)X
l=1

P (∃v ∈ CK(l),v, s. t. −
kX

i=1

Z
K

(l)
i

v ≥
n−kX
i=1

|Z
K̄

(l)
i

v|) (8)

where K(l) is a subset of {1, 2, . . . , n} and |K(l)| = k. Clearly
the number of these subsets is

`
n
k

´
and hence the summation in (8)

goes from 1 to
`

n
k

´
. Since the elements of the matrix Z are i.i.d.

all
`

n
k

´
terms in the first summation on the right hand side of (8)

will then be equal. Therefore we can further write

Pf ≤
 

n

k

!
P (∃v ∈ Cv, s. t. −

kX
i=1

Ziv ≥
nX

i=k+1

|Ziv|) (9)

where Cv is the polyhedral cone Ziv ≥ 0, k + 1 ≤ i ≤ n. Let
E be the set of all extreme rays of Cv. Clearly, |E| ≤ `

n−k
n−m

´
.

The function f(v) = −Pk
i=1 Ziv−Pn

i=k+1 |Ziv| is convex (in
fact linear) over the cone Cv and achieves the maximum (up to the
scaling constant) on its extreme rays. Hence we have

Pf ≤
 

n

k

!
P (∃v ∈ Cv, s. t. −

kX
i=1

Ziv ≥
nX

i=k+1

|Ziv|)

≤
 

n

k

!
P (max

v∈E
(−

kX
i=1

Ziv −
nX

i=k+1

|Ziv|) ≥ 0). (10)

Using the union bound over v we further obtain

Pf ≤
 

n

k

!
P (max

v∈E
(−

kX
i=1

Ziv −
nX

i=k+1

|Ziv|) ≥ 0)

≤
 

n

k

! (n−k
n−m)X
t=1

P (−
kX

i=1

Zivt −
nX

i=k+1

|Zivt| ≥ 0).(11)

where vt, 1 ≤ t ≤ `n−k
n−m

´
are the extreme rays of Cv (see Figure

1). Let L be the set of all subsets of {k + 1, k + 2, . . . , n} of car-

Cv

v1

Z
L

(1)
t

v = 0

Z
L

(2)
t

v = 0

v2

vt

v
2n−k

Fig. 1. Cone Cv.
dinality n−m+1. Let Lt, 1 ≤ t ≤ `n−k

n−m

´
be the elements of the

set L and let Lt(l) , 1 ≤ l ≤ n − m − 1 be the elements of the set
Lt. Clearly, vt can be found as solutions to the systems of equa-
tions ZLtvt = 0where ZLt is a matrix obtained by selecting rows
of Z indexed by the elements of Lt (We assume the worst case, i.e.
that the matrices ZLt are nonsingular; moreover, as noted in [10],
the matrices ZLt are nonsingular with overwhelming probability
for each of the null-space distributions of interest in this paper, see
[18]). Then from (11) we further have
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Pf ≤
 

n

k

! (n−k
n−m)X
t=1

P (−
kX

i=1

Zivt −
nX

i=k+1

|Zivt| ≥ 0)

=

 
n

k

! (n−k
n−m)X
t=1

P (
−Pk

i=1 ZivtPn
i=k+1,i�∈Lt

|Zivt| ≥ 1|ZLt )P (ZLt). (12)

Since vt only depends on ZLt it is independent of Zi, 1 ≤ i ≤
n, i �∈ Lt. Hence, vt on the right side of (12) can be treated as
a constant vector. Furthermore, it is not difficult to see that the
right side of (12) is independent of the index t. Using these facts
without loss of generality we obtain

Pf ≤
 

n

k

! (n−k
n−m)X
t=1

P (
−Pk

i=1 ZivtPn
i=k+1,i�∈Lt

|Zivt| ≥ 1|ZLt )P (ZLt)

=

 
n

k

! 
n − k

n − m

!
×P (

−Pk
i=1 ZicPm+1

i=k+1 |Zic|
≥ 1, Zic ≥ 0, k+1 ≤ i ≤ m+1)

(13)

where c is a deterministic vector. Since the norm of the vector c is
irrelevant we can further assume that ai = Zic, 1 ≤ i ≤ m + 1
are i.i.d. zero mean Gaussian with variance 1. Hence we obtain

Pf ≤
 

n

k

! 
n − k

n − m

!
P (

−Pk
i=1 aiPm+1

i=k+1 |ai|
≥ 1, ai ≥ 0, k+1 ≤ i ≤ m+1).

(14)
Removing the positivity constraint on ai, k +1 ≤ i ≤ m+1, and
using the symmetry of Gaussian random variables it easily follows

Pf ≤ 2k−m−1

 
n

k

! 
n − k

n − m

!
P

 
kX

i=1

ai ≥
m+1X

i=k+1

|ai|
!

.

Using the Chernoff bound we further have

Pf ≤ 2k−m−1

 
n

k

! 
n − k

n − m

!
(Ee

μa1)k(Ee
−μa1)m−k+1 (15)

where μ is a positive constant. After setting k = βn,m = αn, and
using the facts that

`
n
k

´ ≈ e−nH(β) and
`

n−k
n−m

´ ≈ e
−n(1−β)H( 1−α

1−β
)

(H is the base-e entropy function) we finally obtain
Pf ≤ (ξS)n (16)

where

ξS =
2(β−α)e

βμ2

2

eH(β)e
(1−β)H( 1−α

1−β
)

„
e

μ2/2erfc
„

μ√
2

««(α−β)

. (17)

Clearly, as long as α ≤ 1, μ, and β are such that ξS < 1, (16)
guarantees that (7) and subsequently (6) will hold.
Theorem 3 (Strong threshold, Non-negative x, Null-gaussian)
LetA be anm×n measurement matrix with a basis of null-space
comprised of i.i.d. N (0, 1) random variables. Let α = m

n
. Then,

with overwhelming probability, (3) can recover any non-negative
x in (1) with sparsity no greater than βSn. The value of βS can
be obtained by solving

max β

s.t. ξS < 1, μ > 0 (18)

where ξS is as defined in (17).
Proof 3 Follows from the previous discussion.

Corresponding value βW for weak threshold can also be obtained
by solving (18). However, instead of ξS one should rather use
ξW = eH(β)ξS . eH(β) corresponds to a combinatorial term

`
n
k

´
that was used in the union bound in the above derivation. However,
since that comes from a union bound over all possible signs of x
in the case of weak threshold it is not necessary to be included.
The values for strong and weak thresholds in case of non-negative
signals obtained based on the analysis presented here, as well as
the best known ones [8], are displayed on the left side of Figure
2. To obtain the values for strong thresholds in case of general x
βSG one should solve (18) with (the details will be presented in
the extended version of the paper [19])

ξSG =
2βe

βμ2

2

eH(β)e
(1−β)H( 1−α

1−β
)

„
e

μ2/2erfc
„

μ√
2

««(α−β)

. (19)

Similarly as for non-negative signals, to obtain the values for weak
thresholds βWG in case of general x one should solve (18) with
ξWG = 2−βeH(β)ξSG [19]. The obtained values for strong and
weak thresholds in case of general (non-necessarily positive) sig-
nals, as well as the best known ones [7], are displayed on the right
side of Figure 2.
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Fig. 2. Thresholds — A has Gaussian null-space; left) Non-
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3.2. Bernoulli null-space
We assume the complete setup of Section 3.1, except that now
components of the matrix Z, Zij are assumed to be Bernoulli ran-
dom variables, i.e. P (Zij = 1) = P (Zij = −1) = 1

2
. The

derivation of the Section 3.1 can be repeated again. The only dif-
ference is that the value on the right side of (13) will not be inde-
pendent of c. However, it will be independent of the value ‖c‖2.
Hence, one can fix ‖c‖2 = 1 and instead of (15) we have [19]

Pf ≤
`

n
k

´`
n−k
n−m

´
2m−k

max
||c||2=1

(Ee
μZ1c)k max

||c||2=1
(Ee

−μZ1c)m−k+1 (20)

where μ is a positive constant and maximization over c has a role
of finding the worst case one among those that satisfy ‖c‖2 = 1.
We now derive upper bounds on terms on the right side of (20).
Using the results from [13] we have

max
||c||2=1

Ee
μZ1c ≤ Ee

μz = e
μ2

2 (21)
where z is a zero-mean unit-variance Gaussian random variable.
On the other hand using Taylor expansion we have

max
||c||2=1

Ee
−μZ1c ≤ 1 − μ max

||c||2=1
E(Z1c) +

μE(Z1c)
2

2

= 1 − μ max
||c||2=1

E(Z1c) +
μ2

2
. (22)
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The Khintchine inequality [21] states that
max
||c||2=1

E(Z1c) ≥ 1√
2
. (23)

Replacing the upper bound from (23) in (22) we obtain

max
||c||2=1

Ee
−μZ1c ≤ 1 − μ√

2
+

μ2

2
. (24)

Combining (20), (21), and (24) we finally have

Pf ≤
`

n
k

´`
n−k
n−m

´
2m−k

e
kμ2

2 (1 − μ√
2

+
μ2

2
)m−k

.

Following the procedure after (15) one can define

ξ
bern
S =

2(β−α)e
βμ2

2

eH(β)e
(1−β)H( 1−α

1−β
)
(1 − μ√

2
+

μ2

2
)(α−β) (25)

and formulate the following theorem.
Theorem 4 (Strong threshold, Non-negative x, Null-bernoulli)
LetA be anm×n measurement matrix with a basis of null-space
comprised of i.i.d. Bernoulli random variables. Let α = m

n
. Then,

with overwhelming probability, (3) can recover any non-negative
x in (1) with sparsity no greater than βbern

S n. The value of βbern
S

can be obtained by solving
max β

s.t. ξ
bern
S < 1, μ > 0.

where ξbern
S is defined in (25).

Proof 4 Omitted.

Quantities βbern
W , βbern

WG , and βbern
SG that would denote weak thresh-

old for non-negative, weak threshold for general, and strong thresh-
old for general signals, respectively can be determine in the same
way that they were determined in the previous subsection (see
[19]). Obtained values for βbern

S , βbern
W , βbern

WG , βbern
SG are dis-

played in blue on Figure 3 (on the left side of Figure 3 are thresh-
old values for non-negative x; on the right side are threshold values
for general x). The best known values for βbern

S , βbern
W are those

from [10] and they are shown in red on the left side of Figure 3. It
is not known to the author that there are corresponding results for
βbern

SG , βbern
WG available in the literature. Also, it should be noted

that in green, the upper limits (obtained by computing the left side
of (22) for a fixed c rather than upper-bounding it in general) of
our analysis are shown as well [19].

4. CONCLUSION
Our analysis provided a somewhat new technique in proving the
optimality of the l1-norm optimization in compressed sensing prob-
lems with measurement matrices that have Gaussian and Bernoulli
distributed null-spaces. The technique is very simple, yet it pro-
duces very good values of thresholds.
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