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ABSTRACT

Multiple-input multiple-output (MIMO) radar systems have been
shown to achieve superior resolution as compared to traditional radar
systems with the same number of transmit and receive antennas.
This paper considers a distributed MIMO radar scenario, in which
each transmit element is a node in a wireless network, and investi-
gates the use of compressive sampling for direction-of-arrival (DOA)
estimation. According to the theory of compressive sampling, a sig-
nal that is sparse in some domain can be recovered based on far
fewer samples than required by the Nyquist sampling theorem. The
DOA of targets form a sparse vector in the angle space, and there-
fore, compressive sampling can be applied for DOA estimation. The
proposed approach achieves the superior resolution of MIMO radar
with far fewer samples than other approaches. This is particularly
useful in a distributed scenario, in which the results at each receive
node need to be transmitted to a fusion center for further processing.

Keywords: compressive sampling, compressive sensing,
MIMO radar, DOA estimation

1. INTRODUCTION

Unlike a conventional transmit beamforming radar system that
uses highly correlated waveforms, a multiple-input multiple-
output (MIMO) radar system transmits multiple independent
waveforms via its antennas [1]-[5]. A MIMO radar system is
advantageous in two different scenarios [5]. In the first one,
the transmit antennas are located far apart from each other
relative to their distance to the target. The MIMO radar sys-
tem transmits independent probing signals from decorrelated
transmitters through different paths, and thus each waveform
carries independent information about the target. Therefore,
the MIMO radar system can reduce the target radar cross sec-
tions (RCS) scintillations and provide spatial diversity. In the
second scenario, a MIMO radar is equipped withMt transmit
andMr receive antennas that are close to each other relative
to the target, so that the RCS does not vary between the differ-
ent paths. In this scenario, the phase differences induced by
transmit and receive antennas can be exploited to form a long
virtual array with MtMr elements. This enables the MIMO

This work was supported in part by the Office of Naval Research under
Grant ONR-N-00014-07-1-0500

radar system to achieve superior spatial resolution as com-
pared to a traditional radar system. In this paper we consider
the second scenario.
Compressive sensing (CS) has received considerable at-

tention recently, and has been applied successfully in diverse
fields, e.g., image processing [6] and wireless communica-
tions [7]. The theory of CS states that a K-sparse signal x
of lengthN can be recovered exactly fromO(K log N)mea-
surements with high probability via linear programming. Let
Ψ denote the basis matrix that spans this sparse space, and
Φ a measurement matrix. The convex optimization problem
arising from CS is formulated as follows:

min ‖s‖1, subject to y = Φx = ΦΨs (1)

where s is a sparse vector with K principal elements and the
remaining elements can be ignored; Φ is an M × N matrix
incoherent with Ψ andM � N .
The application of compressive sensing to a radar system

was investigated in [8], [9] and [10]. In [8], it was demon-
strated that the CS method can eliminate the need for match
filtering at the receiver and has the potential to reduce the re-
quired sampling rate. In the context of Ground Penetrating
Radar (GPR), [9] presented a CS data acquisition and imaging
algorithm that by exploiting the sparsity of targets in the spa-
tial space can generate sharper target space images with much
less CS measurements than the standard backprojectionmeth-
ods. Also the sparsity of targets in the time-frequency plane
was exploited for radar in [10]. In the context of communica-
tion, [11] proposed the direction of arrival estimation (DOA)
estimation using CS. In [11], the basis matrixΨ is formed by
the discretization of the angle space. Since the signal sources
were assumed to be unknown, the basis matrix was approxi-
mated based on the signal received by a reference vector. That
signal would have to be sampled at a very high rate in order
to construct a good basis matrix.
In this paper, we extend the idea of [8]-[11] to the prob-

lem of DOA estimation for MIMO radar. Since the number of
targets is typically smaller than the number of snapshots that
can be obtained, DOA estimation can be formulated as the re-
covery of a sparse vector using CS. Unlike the scenario con-
sidered in [11], in MIMO radar the transmitted waveforms are
known at each receive antennas, so that each receive antenna
can construct the basis matrix locally, without the knowledge

3017978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



of the received signal at other antennas. Further, radar sys-
tems often suffer from interference due to jammers. Jammer
suppression is investigated here by exploiting the uncorrelat-
edness of the transmitted waveforms with the jammer signal
in order to design the measurement matrix. We provide an-
alytical expressions for the signal-to-jammer ratio (SJR) for
the proposed approach. We also provide simulation results
to show that the proposed approach can accomplish super-
resolution in MIMO radar systems by using far fewer sam-
ples than existing methods, such as Capon, amplitude and
phase estimation (APES) and generalized likelihood ratio test
(GLRT) [2]. This is very significant in a distributed scenario,
in which the receive nodes would need to transmit the locally
obtained information to a fusion center. For such systems, we
show that the proposed approach can enable each node to ob-
tain a good DOA estimate independently. Further, it requires
much less information to be transmitted to a fusion center,
thus enabling savings in terms of transmission energy.

2. SIGNAL MODEL FORMIMO RADAR

We consider a MIMO radar system with Mt transmit anten-
nas andMr receive antennas. For simplicity, we assume that
targets and antennas all lie in the same plane. Let us denote
the locations in rectangular coordinates of the i-th transmit
and receive antenna by (xt

i, y
t
i) and (xr

i , y
r
i ), respectively. We

assume that all transmit and receive node locations relative
to some reference point are known to each node in the net-
work. In a clustered system this information pattern may be
achieved via a beacon from the cluster-head [3]. The loca-
tion of the k-th target is denoted by (dk, θk), where dk is the
distance between this target and the origin, and θk is the az-
imuthal angle, which is the unknown parameter to be esti-
mated in this paper.
Under the far-field assumption dk �

√
(xt

i)
2 + (yt

i)
2

and dk �
√

(xr
i )

2 + (yr
i )2, the distance between the ith

transmit/receive antenna and the k-th target dt
ik/dr

ik can be
approximated as d

t/r
ik ≈ dk − η

t/r
i (θk), where η

t/r
i (θk) =

x
t/r
i cos(θk) + y

t/r
i sin(θk).

Let xi(n) denote the discrete-time waveform transmitted
by the i-th transmit antenna. Assuming the transmitted wave-
forms are narrowband and the propagation is non-dispersive,
the received baseband signal at the k-th target equals [4]

yk(n) = βk

Mt∑
i=1

xi(n)e−j 2π

λ
dt

ik = βke−j 2π

λ
dkxT (n)v(θk)

(2)
for k = 1, . . . , K , where x(n) = [x1(n), ..., xMt

(n)]T and
v(θk) = [ej 2π

λ
ηt

1
(θk), ..., ej 2π

λ
ηt

Mt
(θk)]T is the steering vector.

Due to reflection by the target, the l-th antenna element
receives

zl(n) =

K∑
k=1

e−j 2π

λ
dr

lkyk(n) + εl(n), l = 1, . . . , Mr (3)

where εl(n) represents independent and identically distributed
(i.i.d.) Gaussian noise with variance σ2.
On letting L denote the number of snapshots, and placing

zl(n), n = 0, ..., L− 1 in vector zl we have

zl =
K∑

k=1

e−j 2π

λ
(2dk−ηr

l
(θk))βkXv(θk) + el (4)

where yk = [yk(0), . . . , yk(L−1)]T , el = [εl(0), . . . , εl(L−
1)]T andX = [x(0), . . . ,x(L − 1)]T .
By discretizing the angle space as a = [α1, . . . , αN ], we

can rewrite (4) as zl =
∑N

n=1 ej 2π

λ
ηr

l
(αn)snXv(αn) + el,

whereN >> L, and

sn =

{
e−j 4π

λ
dkβk if there is target at αn

0 otherwise .

3. COMPRESSIVE SENSING FORMIMO RADAR

Assuming that there exists a small number of targets, the DOAs
are sparse in the angle space, i.e., s = [s1, . . . , sN ] is a sparse
vector. A non-zero element with index j in s indicates that
there is a target at the angle αj . By CS theory, we can con-
struct a basis matrix Ψl for the l-th antenna as

Ψl = [ej 2π

λ
ηr

l
(α1)Xv(α1), . . . , e

j 2π

λ
ηr

l
(αN )Xv(αN )] . (5)

Ignoring the noise, we have zl = Ψls. Then we measure
linear projections of the received signal at the l-th antenna as

rl = Φlzl = ΦlΨls (6)

where Φl is an M × L random Gaussian matrix which has
small correlation with Ψl. Placing the output of Nr receive
antennas, i.e., r1, ..., rNr

, in vector r we have

r = Θs, 1 ≤ Nr ≤ Mr . (7)

and the structure of Θ can be easily inferred based on (6).
Therefore, we can recover s by applying the Dantzig selector
to the convex problem in (7) as in [12]:

ŝ = min ‖s‖1 s.t.‖ΘH(r − Θs)‖∞ < μ. (8)

According to [12], we can recover the sparse vector s with
very high probability to select μ = (1 + t−1)

√
2 logNσ2,

where t is a positive scalar.

4. PERFORMANCE ANALYSIS IN THE PRESENCE
OF A JAMMER SIGNAL

In this section, we analyze the effects of a jammer signal on
the performance of DOA estimation for MIMO radar using

3018



CS in terms of the SJR. In the presence of a jammer signal,
the received signal of the l-th receive antenna is given by

rl = Φl

K∑
k=1

e−j 2π

λ
(2dk−ηr

l
(θk))βkXv(θk)

+Φle
−j 2π

λ
(d−ηr

l
(θ))βb + Φlel . (9)

The location of the jammer is denoted by (d, θ), and β and b

denote respectively the reflection amplitude and waveforms
of this jammer. Since b is uncorrelated with the transmitted
waveformsX, the effects of the jammer signal are similar to
those of the addictive noise. Let Al = ΦH

l Φl. Given the the
transmit and receive node locations, the average power of the
desirable signal Ps(l) over the transmit waveforms is

Ps(l) = E{

K∑
k,k′=1

ej 2π

λ
[2(dk−d

k′ )−(ηr

l
(θk)−ηr

l
(θ

k′ ))︸ ︷︷ ︸
ρl(k,k′)

β∗kβk′

×vH(θk)XHAlXv(θk′ )︸ ︷︷ ︸
R

kk′

} = E{

K∑
k=1

|βk|
2Rkk}

︸ ︷︷ ︸
C1(l)

+ E{
∑
k �=k′

ρl(k, k′)β∗kβk′Rkk′}

︸ ︷︷ ︸
C2(l)

(10)

where C1(l) is the dominant term and C2(l) can be ignored
when the number of transmit antennas is sufficiently large.
Therefore, Ps(l) can be approximated by C1(l). To sim-
plify the derivation of the SJR, we assume that the transmitted
waveforms are independently generated, orthogonal quadra-
ture phase shift keyed (QPSK) sequences withXHX = IMt

,
bHb = 1 and ΦlΦ

H
l = IM . Then Ps(l) is approximated by

Ps(l) ≈

K∑
k=1

|βk|
2tr(Al)Mt/L =

MMt

L

K∑
k=1

|βk|
2 . (11)

Similarly, the average power of the jammer interference
over the jammer waveforms is given by

Pj(l) = E{(e−j 2π

λ
(d−ηr

l
(θ))β)(e−j 2π

λ
(d−ηr

l
(θ))β)∗

×bHAlb} = |β|2M/L . (12)

From these two expressions, the SJR becomes

SJR =
Ps(l)

Pj(l)
≈

Mt

∑K
k=1 |βk|

2

|β|2
. (13)

Since the jammer signal is uncorrelated with the transmit-
ted signal, the SJR can be improved by correlating the jammer
signal with the transmitted signal. Combining this with CS,
the measurement matrix in (6) is modified as Φ̃l = ΦlX

H .
Moreover, since Φl is a Gaussian random matrix, Φ̃l is still

Gaussian; therefore it satisfies the restricted isometry prop-
erty (RIP) and is incoherent with Ψl, thus guaranteeing a sta-
ble solution to (8). Based on Φ̃l, the SJR can be obtained as

SJR ≈
L

∑K
k=1 |βk|

2

|β|2
. (14)

Generally, the SJR can be improved by a factor ofL/Mt using
Φ̃l since L � Mt. (14) indicates that the increase in L will
improve the DOA estimates. However, more calculations are
required by 	1-norm minimization due to the increase in the
size of the basis matrix, and the time duration of the radar
pulse needs to be longer as well.
The proposed method is especially advantageous in a dis-

tributed MIMO radar system in which the receive elements
are randomly distributed. In particular, many fewer measure-
ments are required to be sent to the base station or fusion
center (FC) in this situation than are need by conventional
methods. As simulation results show (see Section 5), the pro-
posed method can yield good performance even using a single
receive antenna. With a good initial estimate of DOA, the re-
ceive nodes can adaptively refine their estimates by construct-
ing a higher resolution basis matrix Ψl around that DOA. Re-
stricting the candidate angle space, may reduce the samples
in the angle space that are required for constructing the basis
matrix, thus reducing the complexity of the 	1 minimization
step. On the other hand, the resolution of target detection can
be improved by taking the denser samples of the angle space
around the intimal DOA estimate.

5. SIMULATION RESULTS

In this section, we consider a MIMO radar system with the
transmit/receive antennas randomly distributed within a small
area on a two-dimensional (2-D) disk. Mt = 30 antennas
transmit independentQPSKwaveforms. The carrier frequency
is 8.62 GHz. A maximum of L = 512 snapshots are consid-
ered at the receive node. The received signal is corrupted by
zero mean Gaussian noise. The SNR is set to 20 dB. There are
two targets located at θ1 = −3o and θ1 = −2o, with reflection
coefficients βk = 1, k = 1, 2. A jammer is located at 0o with
an unknown Gaussian random waveform and with amplitude
10, i.e., 20 dB above the target reflection coefficients βk. We
sample the angle space by increments of 0.2o from−5o to 5o,
i.e., a = [−5o,−4.8o, . . . , 4.8o, 5o]. We compare the perfor-
mance of the proposed method and three approaches [2], i.e.,
the Capon, APES and GLRT techniques.
Figs. 1 shows the moduli of the estimated reflection coef-

ficients βk, as functions of the azimuthal angle for (a)Mr = 1
and (b) 10 receive antennas, respectively. In both (a) and (b),
the top three curves correspond to the azimuthal estimates ob-
tained via Capon, APES and GLRT, using 512 snapshots. The
bottom curve is the result of the proposed approach, obtained
using 15 snapshots only. One can see that in the case of us-
ing only one receive node, the presence of the two targets is
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clearly evident via the proposed method based on 15 snap-
shots only. The other methods produce spurious peaks away
from the target locations. When the measurements of multi-
ple receive nodes are used at a fusion center, the proposed ap-
proach can yield similar performance to the other three meth-
ods. However, the comparison methods would have to trans-
mit to the fusion center 512 received samples each, while in
the proposed approach, each node would need to transmit 15
samples each.
The threshold μ in (8) affects DOA estimation for the pro-

posed method. The increase in μ within a range can reduce
the ripples of DOA estimates at the non-target azimuth an-
gles at the expense of the accuracy of the target-reflection-
coefficient estimates. The increase in μ can also reduce the
complexity of (8) because the constraint is looser than that
of smaller μ. If μ is too large, however, the 	1-norm mini-
mization does not work. In Fig.1, a relatively large threshold,
i.e., μ = 3, was used for the single receive node case. As a
result, the CS method yielded less accurate estimates of the
reflection coefficients magnitude than the Capon and GLRT,
but with very few ripples.
Fig. 2 shows the effect of the number of snapshots L

on the DOA estimates of the proposed method and the other
methods. Here, we consider the case of one receive antenna
only. In order to quantify the performances of DOA estima-
tion, we define the ratio of the square amplitude of the DOA
estimate at the target azimuth angle to the sum of the square
amplitude of DOA estimates at other angles as the peak-to-
ripple ratio (PRR). As shown in Fig. 2 , although the increase
in L can improve the PPR of these four methods, the increase
is much faster for the CS method.

6. CONCLUSION

A compressive sensing method has been proposed to estimate
the DOA of targets forMIMO radar systems. The DOA of tar-
gets can construct a sparse vector in the angle space. There-
fore, we can solve for this sparse vector by 	l-norm mini-
mization with many fewer samples than conventional meth-
ods, i.e. the Capon, APES and GLRT techniques. The pro-
posed method is superior to these conventionalmethods when
one receive antenna is active. If multiple receive antennas are
used, the proposed approach can yield similar performance to
the other three methods, but by using far fewer samples.

Acknowledgment
The authors would like to thank Dr. Rabinder Madan of

the Office of Naval Research for bringing the possibility of
using compressive sensing for angle-of-arrival estimation to
their attention.

7. REFERENCES

[1] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini and R. Valenzuela,
“ MIMO radar: An idea whose time has come,” in Proc. IEEE Radar Conf.,
Philadelphia, PA, pp. 71-78, Apr. 2004.

[2] L. Xu, J. Li and P. Stoica, “ Radar imaging via adaptive MIMO techniques,” in
Proc. European Signal Process. Conf., Florence, Italy, Sep. 2006.

[3] H. Ochiai, P. Mitran, H. V. Poor and V. Tarokh, “Collaborative beamforming for
distributed wireless ad hoc sensor networks,” IEEE Trans. Signal Process., vol.
53, no. 11, pp. 4110 - 4124, Nov. 2005.

[4] J. Li, P. Stoica, L. Xu and W. Roberts, “On parameter identifiability of MIMO
radar,” IEEE Signal Process. Lett., vol. 14, no. 12, pp. 968 - 971, Dec. 2007.

[5] C. Chen and P. P. Vaidyanathan, “MIMO radar space-time adaptive processing
using prolate spheroidal wave functions,” IEEE Trans. Signal Process., vol. 56,
no. 2, pp. 623 - 635, Feb. 2008.

[6] J.Romberg, “Imaging via compressive sampling [Introduction to compressive
sampling and recovery via convex programming],” IEEE Signal Process. Mag.,
vol. 25, no. 2, pp. 14 - 20, Mar. 2008.

[7] W. Bajwa, J. Haupt, A. Sayeed and R. Nowak, “Compressive wireless sensing,”
in Proc. IEEE Inform. Process. in Sensor Networks, Nashville, TN, pp. 134 - 142,
Apr. 2006.

[8] R. Baraniuk and P. Steeghs, “Compressive Radar Imaging,” Proc. Radar Confer-
ence, pp. 128 - 133, April, 2007.

[9] A.C. Gurbuz, J.H. McClellan and W.R. Scott, “Compressive Sensing for GPR
Imaging ,” Proc. 41th Asilomar Conf. Signals, Syst. Comput, pp. 2223-2227, Nov.
2007

[10] M. Herman and T. Strohmer, “Compressed Sensing Radar,” in Proc. IEEE Int’l
Conf. Acoust. Speech Signal Process, Las Vegas, NV, pp. 2617 - 2620, Mar. - Apr.
2008.

[11] A.C. Gurbuz, J.H. McClellan, V. Cevher, “A compressive beamforming method,”
in Proc. IEEE Int’l Conf. Acoust. Speech Signal Process, Las Vegas, NV, pp. 2617
- 2620, Mar. - Apr. 2008.

[12] E. Candes and T. Tao, “The Dantzig Selector: Statistical estimation when p is
much larger than n,” Ann. Statist., vol. 35, pp. 2313-2351, 2007.

−5 −3 −2 0 5
0

0.5

1

Capon

M
od

ul
us

 o
f t

he
 e

st
im

at
ed

 r
ef

le
ct

io
n 

co
ef

fic
ie

nt
s

−5 −3 −2 0 5
0

0.5

1
Capon

−5 −3 −2 0 5
0

0.5

1

APES

−5 −3 −2 0 5
0

0.5

1
APES

−5 −3 −2 0 5
0

0.15

0.3
GLRT

−5 −3 −2 0 5
0

0.5

1
GLRT

−5 −3 −2 0 5
0

0.5

1

DOA (deg)
(a) M

r
=1, µ=3.0

CS

−5 −3 −2 0 5
0

0.5

1

DOA (deg) 
(b) M

r
=10, µ=8.0

CS

Fig. 1. DOA estimation using (a) 1 receive antenna and (b) 10 receive antennas. In
both (a) and (b), the top three curves were obtained using 512 snapshots. The bottom
curve was obtained using 15 snapshots only.
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