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ABSTRACT

For a high-order polynomial-phase signal (PPS), instantaneous fre-
quency rate (IFR), which is defined as the second derivative of the
phase, is estimated by using an estimator with only a second-order
nonlinearity. Compared to high-order phase function (HPF), the
proposed IFR estimator presents improved performance including
smaller mean-squared error (MSE) and lower SNR threshold. Sta-
tistical analysis via a multivariate first-order perturbation analysis is
derived for the estimate bias and MSE. Numerical results verify our
analytical results.

Index Terms— Polynomial phase signal, parameter estimation.

1. INTRODUCTION

In radar, sonar, and communications, instantaneous frequency rate
(IFR) reveals the rate of change in the velocity, i.e., acceleration, of
a moving target [1]. Estimation of the IFR is encountered in many
cases. In synthetic aperture radar (SAR), modeling of echoes by
incorporating time-varying acceleration was considered in [2]. A
detailed investigation of the influence of the target time-varying ac-
celeration on a ground moving-target indication was presented in [2].
For a polynomial-phase signal (PPS),

s(n) = Aejφ(n) = Aej
�p

i=0 aini

, (1)

where p is the known order of the PPS, A is the constant amplitude,
φ(n) is the instantaneous phase (IP) and {ai}p

i=0 are unknown phase
parameters, respectively, the IFR, denoted as Ω(n), is defined as the
second-order derivative of the IP [3]:

Ω(n) =
d2φ(n)

dt2
=

p�

i=2

i(i − 1)ain
i−2. (2)

Depending on the order of the PPS, there are generally three cases
to address the IFR:

• p = 2 (i.e, a linear frequency-modulated (FM) signal): the
IFR reduces to the well-known chirp-rate [4];
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• p = 3 (i.e., a quadratic FM signal): the IFR is linearly propor-
tional to time n (cf.(2)), and can be estimated by cubic phase
function (CPF) [3];

• p > 3 (i.e., a high-order PPS): the IFR is generally a non-
linear function of time n (cf.(2)), and can be estimated by
high-order phase function (HPF) [5]:

Hq(n, ω) =

M�

m=−M

q/2�

l=1

[s(n + dlm)s(n − dlm)](rl) e−jωm2
,

where q is the order of the HPF, 2M +1 is the window length,
dl denotes the lag-coefficient, rl is used to impose complex
conjugation if rl = 1, and ω denotes the index in the IFR
domain. Note that the HPF with q = 2 reduces to the CPF [3].
For the high-order PPS, the HPF order q and two coefficient
sets d and r are chosen to assure the HPF is centered along
the IFR of the signal (see Proposition 1 of [6]).

For the high-order PPS, the HPF is generally involved in high-
order nonlinearity. For example of a fourth-order PPS, the HPF order
should be greater than six, i.e., q ≥ 6. This high-order nonlinearity
results in high mean-squared error (MSE) and high SNR threshold
for the IFR estimate. In this paper, an IFR estimator with only a
second-order nonlinearity is proposed for the high-order PPS. An-
alytical results via a multidimensional first-order perturbation anal-
ysis show that the proposed IFR estimator is asymptotically unbi-
ased and presents lower MSE than the HPF-based IFR estimates at
high SNR. Moreover, it provides much lower SNR threshold than
the HPF-based one for the high-order PPS.

The rest of this paper is organized as follows. Section 2 intro-
duces the proposed IFR estimator and provides the asymptotic bias
and MSE of the proposed estimator. Numerical results and conclu-
sions are provided in Section 3 and Section 4.

2. PROPOSED IFR ESTIMATOR

2.1. IFR Estimation for High-Order PPS

To avoid the highly nonlinear transformation of the HPF, we con-
sider a bilinear transformation s(n+m)s(n−m) for a PPS with an
arbitrary order p and, using the binomial expansion, observe that

s(n + m)s(n − m) = A2e
j2φ(n)+j

L�

l=1

2φ(2l)(n)m2l

(2l)!
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where L = �p/2� and φ(2l)(n) denotes the 2l-th derivative of the
φ(n). It is seen that the resulting phase is a polynomial in m with
even-order, and each even-order term in m is associated with the cor-
responding even-order derivative of the IP up to a constant, including
the second derivative of the IP which is the IFR Ω(n) = φ(2)(n). In
order to obtain these phase derivatives, we apply a multidimensional
match filter in m to the above bilinear transformation

BL (n, Ψ) =

M�
m=−M

s (n + m) s (n − m) e
−j

L�

l=1
ωlm

2l

, (3)

where Ψ � [ω1, ω2, · · · , ωL]T denotes a set of indexes. When
L = 1, the proposed function reduces to the CPF in [3]. Once

ωl matches
2φ(2l)(n)

(2l)!
, the magnitude of BL (n, Ψ) reaches its max-

imum and the φ(2l)(n), l = 1, · · · , L can be estimated by locating
the peak. Note that the L phase derivatives include the IFR informa-
tion φ(2)(n). Therefore, for a given time n, the L estimates of the
even-order derivatives of the IP are�

Ω̂(n), · · · ,
2φ̂(2L)(n)

(2L)!

�T

= arg max
Ψ

|BL (n, Ψ) |2. (4)

2.2. Asymptotic Bias and MSE

In this section, the perturbation of the noise to the estimates is quan-
tified as a function of the SNR, the number of samples N , and the
window parameter M . The detailed analysis using a multivariate
first-order approximation is presented in Appendix, and the results
are summarized below.

Proposition 1: For a pth-order PPS corrupted by a white Gaus-
sian noise with mean zero and variance σ2, the asymptotic bias and
the MSE of the L phase-derivative estimates using (4) are given by:

E {δωL×1} = 0L×1, (5)

E
�
(δωl)

2� =

�
1 + 1

2SNR

�
4M4l+1 · SNR

�
Δ−1	

ll
, l = 1, · · · , L, (6)

where SNR is defined as A2/σ2 and Δ is an L × L matrix:

[Δ]i1i2
=

i1i2
(2i1 + 1) (2i2 + 1) (2i1 + 2i2 + 1)

. (7)

From Proposition 1, for all L estimates, the proposed estima-
tor is asymptotically unbiased, and the MSEs of the estimate are
independent of the phase parameter {ai}p

i=0 of the PPS. At high
SNR, the MSEs for all estimates are approximately proportional to
SNR−1, while the MSEs are proportional to SNR−2 at low SNR.
From (6), the estimates present the MSEs inversely proportional to
M . In other words, the larger the window length, the lower the MSE.
As such, for a given SNR, the minimum MSE of the estimator is de-
termined by the maximum window length available at time n, which
leads to the following proposition.

Proposition 2: For a pth-order noisy PPS and a given SNR, the
asymptotic MSEs of the L phase-derivative estimates at time n is
minimized to

E
�
(δωl)

2� =

�
1 + 1

2SNR

�
4
�

N−1
2

− |n0 + N−1
2

− n|�4l+1 · SNR

�
[Δ]−1�

ll
,

where n ∈ {n0, n0 + 1, · · · , n0 + N − 1} and n0 is the initial time
(sample) index. Historically, two cases have been considered for the
initial time index n0, i.e., n0 = 0 [7, 8] and n0 = −(N − 1)/2

(assume N is odd) [3, 5], respectively. Proposition 2 is straightfor-
ward from Proposition 1 by using the maximum value of M which
is subject to

n0 ≤ (n ± M) ≤ n0 + N − 1. (8)

From Proposition 2, the minimum MSE across time n for the es-
timates is achieved at the middle point of observations, i.e., n =
n0 + (N − 1)/2.

2.3. Examples of L = 1 and L = 2

2.3.1. The PPS with order p = 2 and p = 3

Since L = �p/2�, we use the BL(n,Ψ) with L = 1, which is also
the CPF [5]

B1(n, ω1) =
�
m

x(n + m)x(n − m)e−jω1m2
. (9)

The MSE of the IFR estimate using B1(n, ω1) can be obtained by
setting L = 1 in Proposition 2. In this case, the matrix Δ reduces
to a scalar 1/45. Note that the CPF in [5] considered the case of
n0 = −(N − 1)/2. As a result, the MSE of the IFR estimate in
Proposition 2 reduces to

E
�
(δω1)

2� =
45
�
1 + 1

2SNR

�
4
�

N−1
2

− |n|�5 · SNR
. (10)

which agrees with the derived results in [5] (i.e., (40) of [5]).

2.3.2. The PPS with order p = 4 and p = 5

In this case, we propose to use the BL(n,Ψ) with L = 2:

B2(n, Ψ) =
�
m

x(n + m)x(n − m)e−j(ω1m2+ω2m4). (11)

From (4), for a given n, the indexes for the peak of |B2|2 are ω1 =

Ω(n) and ω2 = φ(4)(n)/12. Compared to the HPF-based IFR es-
timator [5, 9], the proposed estimator is involved in only a second-
order nonlinearity, while the HPF involves a sixth-order nonlinearity
for the fourth-order or fifth-order PPS. By setting L = 2, we have

Δ =



1
45

2
105

2
105

4
225

�
⇒ Δ−1 =



2205

4
− 4725

8− 4725
8

11025
16

�
, (12)

and the MSEs of both estimates in Proposition 1 reduce to

E
�
(δω1)

2� =137.8

�
1 + 1

2SNR

�
M5 · SNR

, (13)

E
�
(δω2)

2� =172.26

�
1 + 1

2SNR

�
M9 · SNR

. (14)

Compared to the asymptotic MSE of the HPF-based IFR estimate [9]

E
�
(δω1)

2�
HPF

≈ 207.7

M5 · SNR
, (15)

the MSE of the proposed IFR estimate in (13) is about 50.72% less at
high SNR. At low SNR, the HPF-based MSEs for the IFR estimate
vary approximately in proportional to SNR−6 (see Section III and IV
in [10] and Section III in [5]), whereas the proposed IFR estimator
presents MSEs proportional to SNR−2 (cf. (13)). In other words, the
proposed IFR estimator exhibits much lower SNR threshold than the
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Fig. 1. MSEs of the proposed and HPF-based IFR estimators with
M = 32 and M = 64 for a fourth-order PPS.

HPF-based one for the high-order PPS, which will be further verified
in Section 3.

Except the IFR estimate, the proposed estimator using (11) pro-
vides additional information about the fourth phase derivative, which

is ω2 = 2φ̂(4)(n)
(4)!

= 2a4 for a fourth-order PPS. From Proposition
2, the minimum MSE of the a4 estimate is achieved at the middle
point, i.e., n = n0 + (N − 1)/2,

E
�
(δa4)

2� =
E
�
(δω2)

2�
4

���n=n0+ N−1
2

=
22050

�
1 + 1

2SNR

�
N9SNR

.

Compared to CRB {a4} = 22050
N9SNR

for a fourth-order PPS, together
with its unbiasedness, the proposed a4 estimator can be said to be
asymptotically efficient at high SNR.

3. NUMERICAL EXAMPLES

In this section, we provide two examples to show the MSE-versus-
SNR curves for the IFR estimate and the a4 estimate in Section 2.3.2.
The measured MSE at each SNR is obtained by 500 Monte-Carlo
runs. Consider a fourth-order PPS with parameters A = 1,
(a0, a1, a2, a3, a4) =

�
2, 2 · 10−2, 1 · 10−4, 1 · 10−6, 1 · 10−8

�
,

and N = 129. The IFR is measured at n = 64, which is the middle
point of observations.

Fig. 1 presents the measured MSEs of the IFR estimate at n =
64 by using the proposed estimator and the HPF-based one with two
windows M = 32 and M = 64. The theoretical MSE curves in
Proposition 1 with M = 64 and M = 32 are also included in this
figure. From this figure, we have the following observations:

1. At high SNR, the measured MSEs for the proposed IFR es-
timator agree with their theoretical results in both cases of
M = 32 and M = 64. Note that the high-SNR theoretical
MSEs with M = 64 attain the CRB.

2. With either window length, the MSEs of the proposed esti-
mator are generally lower than the HPF-based MSEs.

3. The proposed estimator presents lower SNR threshold than
the HPF-based one, which is about 6 dB lower in this case.

Fig. 2 presents the measured MSEs of the a4 estimate at n = 64
by using (11) and the high-order ambiguity function (HAF) [11]. It
is observed that the proposed a4 estimate provides 4-dB lower MSE
at high SNR and about 11-dB lower SNR threshold than the HAF-
based one.
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Fig. 2. MSEs of the proposed and HAF-based a4 estimators for a
fourth-order PPS.

4. CONCLUSION

This paper presents an IFR estimator with a second-order nonlinear-
ity. The asymptotical bias and MSE of the proposed IFR estimator
are derived using the multivariate first-order perturbation analysis.
The results show that the proposed IFR estimator is asymptotically
unbiased, and provides lower MSE and SNR threshold than the HPF-
based estimator. A by-product of the proposed estimator is estima-
tion of the phase parameters. Numerical examples verify the analyt-
ical results and show that the proposed estimator outperforms other
estimators for both the IFR estimation and parameter estimation.

5. APPENDIX: ASYMPTOTIC BIAS AND MSE

This analytical results are based on a multivariate first-order pertur-
bation which is extended from the univariate first-order perturbation
in [7]. We summarize the multivariate first-order perturbation as fol-
lows. The estimate bias is given by

E {δωL×1} = − [F2]
−1 E {δF1} , (16)

and the MSE of of the lth estimate is

E
�
(δωl)

2� =
�

[F2]
−1 E

�
[δF1] [δF1]

T
�

[F2]
−1
�

ll
, (17)

where

[F2]i1i2
=2	

�
∂2gN (n,Ω)

∂ωi1∂ωi2

g∗
N (n,Ω) +

∂gN (n,Ω)

∂ωi1

∂g∗
N (n,Ω)

∂ωi2

	
,

[δF1]i =2	
�

∂gN (n,Ω)

∂ωi
δg∗

N (n,Ω) + gN (n,Ω)
∂δg∗

N (n,Ω)

∂ωi

	
.

and, according to our estimator in (4),

gN (n,Ψ) =

M

m=−M

s(n + n)s(n − m)e
−j

L�

l=1
ωlm

2l

, (18)

δgN (n,Ψ) =

M

m=−M

zvs (n, m)e
−j

L�

l=1
ωlm

2l

, (19)

where zvs (n, m) = s(n + m)v (n − m) + s(n−m)v (n + m) +
v (n + m) v (n − m) denotes interference terms. Accordingly,
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the maximum point for the noise-free function gN (n,Ψ) is Ω
Δ
=�

φ(2) (n) , · · · , 2φ(2L)(n)
(2L)!

�T

and its estimate error vector is δωL×1 =

[δω1, · · · , δωL]T .

To derive the bias and MSE, we need the intermediate results

g∗
N (n,Ω) =g∗

N (n,Ψ) |Ψ=Ω ≈ 2A2e−j2φ(n)M,

∂gN (n,Ω)

∂ωi1

≈− j2A2ej2φ(n) M (2i1+1)

(2i1 + 1)
,

∂2gN (n,Ω)

∂ωi1∂ωi2

≈− 2A2ej2φ(n) M (2i1+2i2+1)

(2i1 + 2i2 + 1)
,

where we have used the approximation

M�
m=−M

m2k ≈ 2M (2k+1)

2k + 1
, (M 
 2k) .

By inserting the above intermediate results into F2, we have

[F2]i1i2
= − 32A4M (2i1+2i2+2)i1i2

(2i1 + 1) (2i2 + 1) (2i1 + 2i2 + 1)
. (20)

Then, with the following results

δg∗
N (n,Ω) =

�
m

z∗
vs (n, m)e

j
L�

l=1
Ωlm

2l

,

∂δg∗
N (n,Ω)

∂ωi1

=j
�
m

m2i1z∗
vs (n, m)e

j
L�

l=1
Ωlm

2l

,

δF1 is derived as

[δF1]i1 = −4A2M�{Γi1} , (21)

where �{·} denotes the imaginary part of {·}, and

Γi1 = ej2φ(n)
�
m

�
m2i1 − M2i1

(2i1 + 1)

�
z∗

vs (n, m)e
j

L�

l=1
Ωlm

2l

.

Since E {z∗
vs (n, m)} = 0 for any n and m [10], we have

E {� [Γi1 ]} = 0 and, therefore,

E
�

[δF1]i1

�
= −4A2ME {� [Γi1 ]} = 0. (22)

As a result, from (16), E {δωL×1} = 0L×1, which means all L
estimates are asymptotically unbiased.

According to (17), we need to compute E
�

[δF1] [δF1]
T
�

in

order to find the asymptotic MSE. From (21), we have

E
�

[δF1]i1 [δF1]i2

�
= 8A4M2	 [E {Γi1Γ

∗
i2} − E {Γi1Γi2}] ,

where we have used E {� [x]� [y]} = 0.5	 [E {xy∗} − E {xy}].
Since

E {z∗
vs (n, m1) zvs (n, m2)} =

�
2A2σ2 + σ4	 δ (m1 + m2) ,

+
�
2A2σ2 − σ4	 δ (m1 − m2) ,

(23)

where δ(·) denotes the Kronecker delta function, and by using some
routine algorithms, we have

E {Γi1Γ
∗
i2} =2

�
2A2σ2 + σ4	�

m

�
m2i1 − M2i1

(2i1 + 1)

�

×
�

m2i2 − M2i2

(2i2 + 1)

�
,

E {Γi1Γi2} =0.

Using the above results, we have

E
�

[δF1]i1 [δF1]i2

�
=

128A4
�
2A2σ2 + σ4

	
M2i1+2i2+3i1i2

(2i1 + 1) (2i2 + 1) (2i1 + 2i2 + 1)
.

Comparing the above equation and (20), we notice that

E
�

[δF1] [δF1]
T
�

= −4M
�
2A2σ2 + σ4	F2. (24)

Finally, replacing F2 with (20) and E
�

[δF1] [δF1]
T
�

with (24) in

(17) yields the asymptotic MSE given by (6).

6. REFERENCES

[1] D. R. Wehner, High-Resolution Radar, Artech House, Nor-
wood, MA, 1995.

[2] J. J. Sharma, C. H. Gierull, and M. J. Collins, “The influence
of target acceleration on velocity estimation in dual-channel
SAR-GMTI,” IEEE Trans. Geoscience and Remote Sensing,
vol. 44, no. 1, pp. 134–147, January 2006.

[3] P. O’Shea, “A new technique for estimating instantaneous fre-
quency rate,” IEEE Signal Processing Lett., vol. 9, no. 8, pp.
251–252, August 2002.

[4] T. Abotzoglou, “Fast maximum likelihood joint estimation of
frequency and frequency rate,” IEEE Trans. on Aerosp. Elec-
tron. Syst., vol. 22, pp. 708–715, November 1986.

[5] P. O’Shea, “A fast algorithm for estimating the parameters of a
quadratic FM signal,” IEEE Trans. Signal Processing, vol. 52,
no. 2, pp. 385–393, February 2004.
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