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ABSTRACT

In this paper we propose a nonparametric hypothesis test for station-
arity based on local Fourier analysis. We employ a test statistic that
measures the variation of time-localized estimates of the power spec-
tral density of an observed random process. For the case of a white
Gaussian noise process, we characterize the asymptotic distribution
of this statistic under the null hypothesis of stationarity, and use it
to directly set test thresholds corresponding to constant false alarm
rates. For other cases, we introduce a simple procedure to simulate
from the null distribution of interest. After validating the procedure
on synthetic examples, we demonstrate one potential use for the test
as a method of obtaining a signal-adaptive means of local Fourier
analysis and corresponding signal enhancement scheme.

Index Terms— Hypothesis testing, stationarity, adaptive STFT,
nonparametric spectral estimation, Wold decomposition

1. INTRODUCTION

Stationarity of random processes can be characterized in a variety
of ways. When processes are completely described by parametric
models (e.g., rational transfer functions), the constancy of model
parameters over time is necessary and sufficient to guarantee their
stationarity—an observation previously used to construct statistical
tests for this property [1]. However, in many practical cases, a lack
of prior knowledge about any underlying parametric model can ren-
der such parametric tests of limited use. On the other hand, time-
invariance of coefficients arising in nonparametric (transform-based)
representations is also sufficient to guarantee stationarity.

Therefore, we propose a nonparametric test for stationarity
based on the well-known approach of checking that the statistics
of transform coefficients over epochs of the signal do not deviate
greatly from their sample mean. A similar approach based on the
wavelet transform is described in [2]. Our interest here is in short-
time spectral representations, as these are known to approximately
diagonalize the covariance structure of signals which are roughly
stationary over intervals [3]. As such, these representations are
frequently used in the enhancement of locally stationary random
processes. Accordingly, we define a test statistic that measures
the variation of short-time spectral coefficients through time. Even
though the sampling distributions of the test statistic are not analyt-
ically tractable, we can implement a constant false alarm (CFAR)
hypothesis test using a Monte Carlo procedure, similar to one de-
scribed in [2], to approximate the sampling distribution under the
null hypothesis.

2. A TEST FOR STATIONARITY

Given N observations of a zero-mean discrete-time random process
(x[n], n ∈ Z), we are interested in testing the hypothesis:

H0 : x[n] is wide-sense stationary (WSS)

H1 : x[n] is nonstationary.
(1)

Wide-sense stationarity of x[n] implies that its autocorrelation func-

tion r[n, m] � E(x[n]x[m]) depends only on the lag τ = n −m,
therefore we write r[n, m] = r[τ ] in this case. If we partition the N
observations into M non-overlapping rectangular windows each of
length L, then by the Wiener-Khintchine theorem, the power spectral
density (PSD) corresponding to the mth segment is:

Sm
xx[k] =

1√
L

L/2∑
τ=−L/2

rm[τ ]e−i2πkτ/L
. (2)

Even when the process x[n] is not stationary, we can still loosely
interpret the quantity Sm

xx[k] in (2) as the Fourier transform of the
instantaneous or frozen-time autocorrelation of the process. Thus,
a process is wide-sense stationary only if the relation Sm

xx[k] =

Sm′
xx [k] holds for every frequency bin k and all m, m′ ∈ [1, . . . , M ].

Consequently, consider the function V (x) which measures the
amount of spectral variation in windowed data segments over time:

V (x) � 1

ML

L−1∑
k=0

M−1∑
m=0

(
Sm

xx[k]− 1

M

M−1∑
p=0

Sp
xx[k]

)2

. (3)

Clearly, if V (x) = 0 then x[n] is a WSS process. We can turn (3)
into a test statistic replacing Sm

xx[k] by its estimate from observed
data. Specifically, we consider the periodogram and multitaper peri-
odogram [4] estimators of the PSD which are given by:

Ŝm
xx[k] � |Xw

m[k]|2 and S̃m
xx[k] � 1

R

R∑
r=1

|Xwr
m [k]|2. (4)

Here, Xw
m[k] is the discrete short-time Fourier Transform (STFT):

Xw
m[k] =

1√
L

L(m+1)∑
n=Lm+1

w[n− Lm]x[n]e−i2πkn/L
, (5)

where w is a rectangular window of length L, and Xm[k] is the
kth frequency component of the mth STFT window. The multitaper
spectrum Xwr

m [k] is found by choosing the window w = wr in (5)
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Fig. 1. ROC curves summarizing test performance for time-varying AR (left)
and MA (right) signals using STFT- and multitaper-based estimators. Signals
were chosen to illustrate relative rather than absolute performance

to be the rth of R discrete prolate spheroidal sequences [4]. Note
that we have assumed that windows do not overlap.

Thus, the two test statistics we consider are given by:

V̂ (x) � 1

ML

L−1∑
k=0

M−1∑
m=0

(
Ŝm

xx[k]− 1

M

M−1∑
p=0

Ŝp
xx[k]

)2

(6)

Ṽ (x) � 1

ML

L−1∑
k=0

M−1∑
m=0

(
S̃m

xx[k]− 1

M

M−1∑
p=0

S̃p
xx[k]

)2

(7)

The main motivation behind considering two test statistics is that

even though both V̂ (x) and Ṽ (x) are asymptotically unbiased [4],
the latter may have lower variance since the variance of the mul-
titaper PSD estimator is smaller than that of the periodogram esti-

mator. Specifically, we have that as L grows, Var(Ŝm
xx[k]) tends to

(Sm
xx[k])2, while Var(S̃m

xx[k]) tends to (Sm
xx[k])2/R. Thus, even

for a fixed R and large L, Var(S̃m
xx[k]) < Var(Ŝm

xx[k])1. This latter
fact is crucial—lower variance estimators of the PSD imply higher
sensitivity of (7) to changes in the signal statistics, and tests based

on V̂ (x) can be expected to be more powerful than those based on

Ṽ (x).

To illustrate this point, we compare the relative detection per-
formance of the STFT- and multitaper-based test statistics using
synthetic time-varying MA(2) and time-varying AR(2) signals—
corresponding to smooth and peaky spectra, respectively. The
observations, each of length 5120, were obtained by changing the
MA or AR coefficients at the midpoint of the signal. In particular,
to generate data under H1, the initial MA coefficients of (1, 0.4)
were changed to (1, 0.4 + δ) with δ ∈ (0.1, 0.2) and the initial
AR coefficients (−1.273, 0.81) were changed to (−1.196, 0.81)
corresponding to a π/50 Hz shift in the center frequency of the
associated bandpass filter. To generate data under H0 the initial
parameters were simply left unchanged.

The test statistics of (6) and (7) were computed using 10 adja-
cent 512-sample rectangular windows; R = 6 multitapers were used

to obtain Ṽ (x). Six hundred Monte Carlo simulations were done for
these scenarios and the resultant ROC curves are shown in left and
right panels of Figure 1 for the AR and MA examples, respectively.
The performance gains associated with using the multitaper estima-
tor are evident for this example.

3. CONSTRUCTING A CFAR TEST

Next we discuss how to implement the hypothesis test of (1) using
a constant false alarm rate threshold, which requires knowledge of

1Choosing R large, however, may lead to greater bias and a weaker test.

p(V̂ (x);H0) and p(Ṽ (x);H0)—the sampling distributions of (6)
and (7), respectively, under H0. In this case, Sm

xx[k] is independent
of m and so we may estimate Sxx by:

Ŝxx[k] =
1

M

∑
m

Ŝm
xx[k] or S̃xx[k] =

1

M

∑
m

S̃m
xx[k]. (8)

There are other choices for how to estimate Sxx[k] under H0 (e.g.,
median of the short-time spectra), but the estimator in (8) is natural
and leads to good performance.

If the sampling distributions of (6) and (7) for the class of WSS
signals with power spectra given by (8) are known—indicating how
to set a CFAR threshold γ—the null hypothesis is rejected when the

test statistic exceeds γ. Therefore, we characterize p(V̂ (x);H0) and

p(Ṽ (x);H0) next.

3.1. Asymptotic Analysis: White Noise Case

We begin by considering p(V̂ (x);H0) for the special case when
x[n] is a white Gaussian noise process—not only do these calcula-
tions provide some intuition about the hypothesis test, but they shall
also reappear in our analysis of the general case in Section 3.2. We

begin by defining l � L/2− 1 and rewriting V̂ (x) of (6) as:

V̂ (x) =
1

M2l

l∑
k=0

⎡⎣M−1∑
m=0

(M − 1)(̂Sm
xx[k])2 −

M−1∑
r �=s

Ŝs
xx[k]̂Sr

xx[k]

⎤⎦ .

It is well known that Ŝm
xx[k] ∼ 1

2
χ2

2 for 0 < k ≤ l and Ŝm
xx[0] ∼ χ2

1.

Letting μki denote the ith moment of the kth PSD bin, from (3.1) it

follows that E

(
V̂ (x)

)
= (M − 1)/ML

∑l
k=0(μk2 − μ2

k1) and:

E

(
V̂ (x)2

)
=

1

(Ml)2

l∑
k=0

[(
M − 1

M

)2 [
Mμk4 + M(M − 1)μ2

k2

]
− 2

(M − 1)2

M

[
2μk3μk1 + (M − 2)μk2μ

2
k1

]
(9)

+
1

M2

[
2P M

M−2μ
2
k2 + 4P M

M−3μk2μ
2
k1 P M

M−4μ
4
k1

]]
+

(M − 1)2

(Ml)2

∑
k

∑
j

[
μk2μj2 − 2μk2μ

2
j1 + μ2

k1μ
2
j1

]
,

where P m
k � m!/(m− k)!. A histogram of p(V̂ (x);H0) obtained

by simulation, overlaid with a Gaussian distribution fitted according
to (9), is shown in the left panel of Figure 2 to illustrate this analysis.

Even though the distribution of V̂ (x) is not Gaussian, the accuracy
of the Normal approximation increases with the number of windows
M . We have observed reasonable results when at least 15 − 20
windows are used in calculating V̂ (x), as evidenced by the plot of
empirical kurtosis as a function of the number of windows in the
middle panel of Figure 2.

A key point is that we would ideally like to choose as large a
window as possible, while still preserving the sensitivity of the pe-
riodogram to the presence of nonstationarity. Note that (9) implies

that Var(V̂ (x)) increases linearly in the number of analysis windows
used, as confirmed by the plot in the right panel of Figure 2. Thus, L
decreases as M increases and we conclude that using short analysis
windows may increase the overall mean-square error of our spectral
estimates and thereby decrease the power of the hypothesis test.
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Fig. 2. Understanding p(V̂ (x);H0) when x[n] is WGN. Left: empirical
(grey) and Gaussian (black) approximations of p(V̂ (x);H0) with M = 20.
The kurtosis of V (x) under H0 decreases (middle) and its variance grows
linearly with M (right)

3.2. Wold Representation: General Case

In the general case, when the spectrum (8) is not white or is esti-

mated using overlapping windows, deriving p(V̂ (x);H0) directly is
either impossible or extremely tedious. Further, these calculations
would be applicable only when M is large (e.g., middle panel of
Figure (2)). Instead, we proceed via simulation, by leveraging an
innovations representation of stationary processes. The Wold repre-
sentation of a stationary process x[n] is given by:

x[n] =
∞∑

l=0

h[l]ε[n− l], (10)

where E(ε[n]ε[m]) = δ[n − m] and h[n] is the impulse response
of a stable and minimum-phase filter. This allows us to express the
PSD of x[n] as follows:

Sxx[k] = |H[k]|2 Sεε[k]. (11)

Since Sεε[k] = 1, to estimate Sxx[k] and |H[k]|2 is equivalent.
Thus, assuming that an observed signal x[n] has been partitioned
according to the same tiling of the time-frequency place that was

used to define the test statistic in (6), we have that |Ĥ[k]|2 = Ŝxx[k]
as defined by (8).

The key idea behind our simulation approach is to use (11) in or-
der to generate realizations of Sm

xx[k], under the null, by multiplying

|Ĥ[k]|2 with different realizations of white noise spectra. In turn,
this enables the computation of (6) for every realization so achieved.
Specifically, let the ith realization of a white noise PSD be denoted by

Ŝm,i
εε [k], then the ith realization of a WSS signal in the mth window

is given by:
̂Sm,i

xx [k] = |Ĥ[k]|2̂Sm,i
εε [k]. (12)

The ith instantiation of (6) underH0 is, therefore, given by:

V̂ i(x) =
1

ML

L∑
k=1

M∑
m=1

(
̂Sm,i

xx [k]− 1

M

M∑
p=1

Ŝp,i
xx [k]

)2

=
1

ML

L∑
k=1

|Ĥ[k]|4
M∑

m=1

(
̂Sm,i

εε [k]− 1

M

M∑
p=1

Ŝp,i
εε [k]

)2

.

(13)

Similarly, we may obtain replicates of Ṽ i(x) and characterize

p(Ṽ (x);H0) by substituting multitaper estimates of the relevant
PSDs into (12) and (13). In both cases, we may build up an empir-
ical CDF of (6) or (7) and reject H0 if the observed statistic lies in
the tail beyond a specified false alarm threshold γ.

It is crucial to observe that since Ĥ[k] is fixed, the only source
of randomness in (13) is due to variance of the estimator for the PSD

Fig. 3. Example of how a fixed-resolution scheme using windows of
length L (top) is modified to achieve an adaptive-resolution scheme
by merging neighboring windows (bottom). See [5] for details.

of white noise. Therefore, in practice, once a windowing scheme has

been chosen, only the distribution of Ŝm,i
εε [k] has to be determined

empirically (or via the Gaussian approximation of Section (3.1)!)

for each k. Then p(V̂ (x);H0) is readily obtained by using Ĥ[k]
together with (13)—a powerful construct since all Monte-Carlo sim-
ulations may be done offline.

4. EXAMPLE APPLICATION

As an example of the applicability of the proposed testing framework
to actual time series data, we evaluate its performance in the context
of signal enhancement. Audio noise reduction is generally achieved
through the attenuation of spectral coefficients using uniformly sized
windows and local Fourier analysis. Instead, we propose an adaptive
enhancement scheme in which the adaptive analysis scheme of [5] is
modulated by the hypothesis test of Section 2.

4.1. Enhancement System

Figure 3 illustrates the adaptive STFT scheme of [5], in which con-
secutive short-time analysis windows are to be merged based on a
measure of time-frequency concentration. Here, we evaluate the per-
formance of the proposed hypothesis test of (1) by using it in place of
time-frequency concentration as the decision device in this adaptive
scheme; the reader is referred to [5] for more details.

Assuming observations y[n] degraded by additive white Gaus-
sian noise, the resulting spectral slice Ym[k] corresponding to the
mth window is attenuated according to the standard Wiener suppres-
sion scheme:

X̂m[k] =
Sm

xx[k]

Sm
xx[k] + σ2

Ym[k]. (14)

As we are interested in illustrating the performance of our nonpara-
metric test for stationarity, rather than evaluating competing spec-
tral estimators, we use the periodogram of the clean signal |Xm[k]|2
(instead of the usual |Ym[k]|2) as the “oracle” estimate of Sm

xx[k].
Waveform reconstruction is achieved by overlap-add synthesis de-
scribed in [5], as the adaptive analysis scheme still obeys the requi-
site partition of unity property.
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4.2. Enhancement Example Results

We now apply the enhancement scheme to a synthetic test signal
from [5], as well as to a short segment of clarinet music. Both signals
were corrupted by additive white Gaussian noise to yield a signal-
to-noise (SNR) ratio of 5 dB. In both examples, the fixed-resolution
scheme employed 200-sample triangular windows with 50% over-
lap, as in Figure 3. To decide if two adjacent windows should be
merged, each individual window is further subdivided into 4 parts
and the test statistic of (6) is computed across all six windows tiling
the two neighboring segments (the windows used to conduct the hy-
pothesis are distinct from those used in the adaptive scheme). Using
the techniques of Section 3.2 a 10% CFAR threshold was found and
used in each decision of the adaptation scheme. Note that (13) allows

us to approximate p(V̂ (x);H0) even if windows are overlapping.

The adaptation scheme is applied to one instance of the syn-
thetic signal and the resultant segmentation is shown in Figure 4.
The hypothesis test aids in identifying stationary regions which, in
turn, leads to improved enhancement performance (leading to an ad-
ditional 0.5–2 dB SNR gain) relative to the fixed-resolution scheme
as shown in Figure 5.

Adaptive segmentation of the clarinet recording, shown in Fig-
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Fig. 6. Fixed (top) and adaptive (bottom) segmentations of clarinet record-
ing, degraded with white Gaussian noise to yield an SNR of 5 dB

ure 6, accurately captures dominant signal features even in the pres-
ence of severe noise. Here the adaptive enhancement scheme pro-
vides an additional 1.2 dB SNR gain over the fixed-resolution ap-
proach. Moreover, informal listening tests have indicated a signifi-
cant reduction in musical noise—in agreement with results obtained
for speech in [5].

5. DISCUSSION

Here we have presented a nonparametric hypothesis test for sta-
tionarity. To this end, we proposed two test statistics based on the
periodogram and multitaper estimators of the power spectral density
and studied their sampling distribution under the null hypothesis us-
ing an efficient simulation scheme based on the Wold representation.
We have evaluated our scheme in the context of enhancement for
synthetic signals and explored its applicability for musical signals
with promising results. Future work will consider testing procedures
for more restricted classes of alternates.
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