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ABSTRACT
Natural signals are often characterized by a complex time-

frequency behaviour. These signals exist in many different

applications and systems from underwater acoustic to audio

signals with sound attacks or electrical systems with partial

discharges and commutation switches, for example. There

is a huge number of Time-Frequency (TF) methods that aim

to characterize these signals in terms of first phase derivative

analysis (i.e Instantaneous Frequency Law). Recently, we in-

troduced the time frequency distribution based on complex

lag arguments. This distribution is able to reduce inner in-

terferences terms which appear when studying non-linear TF

components. It also offers access to an instantaneous law rep-

resentation of any phase derivative order. In this paper, we use

these two properties to study highly non-stationary signals as

well as transient signals.

Index Terms— “Time-phase derivatives” representation,

complex arguments, phase analysis

1. INTRODUCTION

Analysing signals characterized by a complex time-frequency

behaviour is very challenging, due to the richness of the infor-

mation described by the analyzed phenomena. In a large num-

ber of applications, the analysis of the time-frequency (TF)

content provides an efficient solution for the characterization

of diverse physical phenomena. Wave propagation trough

time-varying dispersive channels, micro-Doppler effects or

mechanical signals are just three examples requiring an effi-

cient time-frequency analysis of signals arising from these ap-

plications [1]. The signals associated to these applications are

generally characterized by many non-linear time-frequency

structures. An efficient analysis of such signal should high-

light the time-frequency energy of signal structures despite

of artefacts that inherently appear when using time-frequency

representations (TFR). Hence, in the case of linear TFRs, the

well-known trade-off between time and frequency resolutions

has to be considered. This topic has been subject to a large

number of works. An alternative to linear TFR is the concept

of quadratic TFRs [2]. One of the major research directions

concerns the interference control in order to focus on time-

frequency components of the signals. There are two types

of interferences: inner interferences, generated in the case of

non-linear time-frequency components and cross-terms, gen-

erated by the multi-component structures. The inner interfer-

ences type is usually addressed by non-linear TFR designed

with help of time or frequency warping concept [1], [3].

Recently, the complex time distribution concept has been

introduced in [4] as an efficient way to produce almost com-

pletely concentrated representations along the polynomial in-

stantaneous frequency laws (IFL) of order 4 or less. In [5] we

propose the generalization of the complex time distribution

producing, in the mono component case, highly concentrated

distributions around arbitrary non-linear IFLs. In this paper

we will show that the complex time distribution concept is

able to deal with transient signals characterization. This in-

terest of processing in transient signal context is achieved via

the derivability property of this distribution.

The paper is organized as follows. In Section 2 a presen-

tation of the complex time distribution concept is done. The

capability of the generalized version of this concept to deal

with transient signals is presented in Section 3. We conclude

in Section 4.

2. TIME-FREQUENCY DISTRIBUTION BASED ON
COMPLEX LAG ARGUMENTS

The concept of complex lag distributions has been introduced

in [4] as a way for inner interferences reduction with respect

of Wigner distribution. Recently, this concept has been gen-

eralized in order to focus on arbitrary instantaneous phase

derivate of a signal [5]. Let us consider the signal defined

as:
s(t) = A . ejφ(t) (1)

The case of A depending of t can also be addressed since the

effect of slowly varying amplitude is “visible” on the instan-

taneous phase. Otherwise, after a signal normalization, we

can consider A = 1.

In order to better understand the concept of complex lag
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distribution and its generalization, applied on such a signal,

let us introduce the very well known Wigner distribution with

appropriate analysis of its moment and lags definition.

2.1. The Wigner Ville Distribution

The Wigner Ville distribution of a signal s(t) is by definition

[2]:

WV D(t, ω) = Fτ

⎡
⎢⎢⎣

Mwv(t,τ)︷ ︸︸ ︷
s(t +

τ

2
)s∗(t − τ

2
)

⎤
⎥⎥⎦ (2)

This corresponds to the Fourier transform, with respect

of the lag variable τ , of a higher order moment denoted

Mwv(t, τ). As illustrated in Fig. 1, this moment is calculated

using two lag coefficients taken on the real axis.

Fig. 1. Lag coefficients taken on the real axis

For a signal defined in (1), the expression of the moment

becomes:

Mwv(t, τ) = ej[φ(t+ τ
2 )−φ(t− τ

2 )] (3)

Let us express the signal phase law in terms of Taylor se-

ries expansion:

φ(t +
τ

2
) = +φ

′
(t)

τ

21 1!
+ φ(2)(t)

τ2

22 2!
+ φ(3)(t)

τ3

23 3!
+ . . .

φ(t− τ

2
) = −φ

′
(t)

τ

21 1!
+ φ(2)(t)

τ2

22 2!
− φ(3)(t)

τ3

23 3!
+ . . .

Using the derivation results above, the expression (3) be-

comes:

Mwv(t, τ) = ejφ
′
(t)τ × e

j
h
φ(3)(t) τ3

22 3!
+...

i
(4)

By substituing (4) in (2), we obtain a new analytical expres-

sion (5) of the WVD defining it as an ideally concentrated

representation of the IFL but degraded because of the convo-

lution with a spreading factor.

WV D(t, ω) = δ
(
ω − φ

′
(t)

)
∗ω Fτ

[
ejQwv(t,τ)

]
(5)

where Qwv is the spread function defined as:

Qwv(t, τ) = φ(3)(t)
τ3

22 3!
+ φ(5)(t)

τ5

24 5!
+ φ(7)(t)

τ7

26 7!
. . .

From this spread function expression, it is easy to understand

that the concentration of the WV representation for a chirp

signal (polynomial phase law of second order) will be optimal

in so far as all φ’s derivates terms in Qwv will be equal to zero.

2.2. The Complex-Time Distribution

The Complex-Time distribution of a signal s(t) is by defini-

tion [4]:

CTD(t, ω)=Fτ

⎡
⎢⎢⎣

Mct(t,τ)︷ ︸︸ ︷
s(t +

τ

4
)s∗(t − τ

4
)s−j(t + j

τ

4
)sj(t − j

τ

4
)

⎤
⎥⎥⎦

(6)

In the same way as WVD, this corresponds to the Fourier

transform, with respect of the lag variable τ , of a higher order

moment denoted Mct(t, τ). As illustrated in Fig. 2, this mo-

ment is in this case of order four and calculated using two lag

coefficients taken on the real axis as well as on the imaginary

axis, hence the concept of “complex-time arguments”.

Fig. 2. Lag coefficients taken on the real and imaginary axis

Following the same frame of analysis described in sub-

section 2.1 leads to a new expression of CTD defined with

the same form as (5). The spread function for this distribution

is [4]:

Qct(t, τ) = φ(5)(t)
τ5

44 5!
+φ(9)(t)

τ9

48 9!
+φ(13)(t)

τ13

412 13!
. . .

Defining a distribution using well-chosen “complex-lag” ar-

guments (+j and −j on the imaginary axis) involves a sig-

nificant decreasing of the spread factor. The first term of

Qct(t, τ) is of the fifth order. The terms of phase derivatives

of order 3, 7, 11,. . . are completely eliminated and all remain-

ing terms are much more reduced with respect to the ones in

the Wigner distribution. The Complex Time Distribution im-

proves the concentration of the IFL representation comparing

to the one obtained by Wigner Distribution (Fig. 4). In the

case of a non-linear and rapidly varying TF structure, the in-

ner interferences are strongly reduced.

2.3. The Generalized Complex-time Distribution

Recently, a generalization of the concept of CTD has been de-

fined [5]. The starting point of this generalization procedure

was the Cauchy’s integral formula [6]. Using this theorem, it

is possible to compute the Kth order derivative of the instan-

taneous phase as:

φ(K)(t) =
K!
2πj

∮
γ

φ(z)
(z − t)K+1

dz (7)
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This relation shows the interest of the complex time concept:

the Kth order derivate of function φ at instant t can be com-

puted as the complex integral over the integration path γ de-

fined, in the complex plane, around this point. Applying the

theory of Cauchy’s integral theorem [6] and considering a cir-

cle as integration path, the expression (7) becomes [5]:

φ(K)(t) =
K!

2πτK

∫ 2π

0

φ(t + τejθ)e−jKθ dθ (8)

As illustrated in Fig. 3, the discrete version of (8) is defined

for θ = 2πp/N and p = 0, . . . , N−1, where N is the number

of discrete values of the angle θ (expression (9)).

Fig. 3. The complex lag coordinates

φ(K)(t) =
K!

NτK

N−1∑
p=0

φ
(
t + τej 2πp

N

)
e−j 2πpK

N + ε (9)

where ε is the discretization error.

Using the property of the unitary roots ωN,p = ej2πp/N

and the variable change τ ← K

√
τ K!

N , the expression (9) be-

comes:

N−1∑
p=0

φ

(
t + ωN,p

K

√
τ

K!
N

)
ωN−K

N,p =φ(K)(t)τ +Q (t, τ) (10)

where Q is the spread function defined as [5]:

Q(t, τ) = N

+∞∑
r=1

φ(Nr+K)(t)
τ

Nr
K +1

(Nr + K)!

(
K!
N

)Nr
K +1

(11)

As indicated by (10) and (11), the sum of the phase sam-

ples defined in the complex coordinates (left side of 10) is

linear depending on τ if the φ’s derivates of orders greater

than N + K are 0. In order to exploit this property we de-

fine the generalized complex-lag moment (GCM) of s as the

operation leading to (10):

GCMK
N [s](t, τ) =

N−1∏
p=0

sωN−K
N,p

(
t + ωN,p

K

√
τ

K!
N

)

= ejφ(K)(t)τ+jQ(t,τ)

The computation of GCMs implies the evaluation of signal

samples at complex coordinates. This is achieved using the

analytical continuation of a signal defined as [5]:

s(t + jm) =
∫ +∞

−∞
S(f)e−2πmfej2πftdf

Fig. 4. Inner interferences reduction property of GCD

where S(f) is the Fourier transform of signal s. Taking the

Fourier transform of GCM with respect of τ , we define the

generalized complex-lag distribution (GCD):

GCDK
N [s](t, ω) = Fτ

[
GCMK

N [s](t, τ)
]

(12)

= δ
(
ω − φ(K)(t)

)
∗ω Fτ

[
ejQ(t,τ)

]
As stated by this definition, the Kth order distribution of the

signal, obtained for N complex-lags, highly concentrates the

energy around the Kth order derivate of the phase law. This

concentration is optimal if the φ’s derivates of orders greater

than N + K are 0, exactly like in the case of chirps repre-

sented by Wigner distribution.

The general definition (12) leads to a large number of

TFRs, part of them well known in literature. For example, for

K = 1;N = 2 the WVD is obtained (2.1) whereas the case

K = 1;N = 4 corresponds to the complex-time distribution

(CTD) (2.2). In [5] we have shown that increasing the number

of complex lags leads to an attenuation of inner interferences

due to the time-frequency non-linearity. This is illustrated by

the example in Fig. 4 for the following test signal:

s1(t) = ej(3cos(πt)+ 4
3 cos(3πt)+ 2

3 cos(6πt))

We remark the better concentration of time-frequency en-

ergy in the case of GCD1
6 than in the case of the other TFRs.

This is analytically proved by the spread function expression

(11) and illustrated by the example Fig. 4.

The next example (Fig. 5) points out on the derivability

property of GCD. We consider another highly non-stationary

test signal defined as:

s2(t) = ej(6cos(πt)+ 2
3 cos(3πt)+ 4

3 cos(5πt))

The Fig. 5 plots in the top the analytic derivatives of first,

second and third orders of the IPL of this signal. We plot, in

the bottom of the Fig. 5, the GCDs of the same orders. We re-

mark that the theoretical derivatives are correctly represented

by the GCDs of corresponding order, justifying the derivation

property of the complex-lag distribution.
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Fig. 5. Derivation of instantaneous phase by GCDs

3. APPLICATION TO TRANSIENT SIGNALS

The signal s used in this application is a train of three fre-

quency modulations (FM) corrupted by some additive noise

(SNR=35dB). The three FM have short duration (two linear

FM in phase opposition on 128 samples and one parabolic FM

on 64 samples) compared to the analysis time frame (1510
samples). Such signal could correspond to a received signal

from two different radars using linear and parabolic FM wave-

forms, respectively (Fig. 6.a).

In this section, the derivability property of GCD is used in

order to enable the characterization of transient natures which

would be more difficult using just time-frequency representa-

tion because of confusing TF signatures. As shown in Fig.

6.b, the two linear FM have their well-expected TF structure

whereas the transient parabolic FM looks like a chirp in the

TF plane. This is because of the short duration effect on the

large frame of analysis. We can observe that the linear and

parabolic shapes of the FM are not easily distinguishable. The

parabolic shape appear to be linear. Without a priori knowl-

edge about the signal, the TF representation alone leads to

considerate three transients of chirp nature which is actually

wrong. To point out the true nature of the parabolic FM, the

GCD2
6 is used. Considering the second order phase derivative

lets to stationarize the linear FM and gives a linear signature

for the parabolic FM (Fig. 6.c). The TF rate representation

plane avoids the previous confusion.

4. CONCLUSION

The Generalized Complex-time Distribution offers the capa-

bility to focus on arbitrary derivates of a signal phase law.

This distribution is equivalent to a “Time-Phase derivatives”

tool giving highly concentrated representation of the instan-

taneous phase derivative we are interested in. For signals

with time-frequency structure characterized by non-linearity

and quick variations, the GCD proves its efficiency. Having

access to any phase derivative order makes possible useful ap-

plications such as the order reduction of a polynomial phase

law or the removal of quasi-stationary corrupting signals in

multi-components case [7]. This derivability property shows

Fig. 6. (a) Signal s composed of two linear FM, one parabolic

FM and additive noise (SNR=35dB) ; (b) GCD1
2 of s ; (c)

GCD2
6 of s

its efficiency also for transient signals characterization. Two

transient informations of different nature but having similar-

looking TF signatures can be characterized thanks to more

specific signatures obtained from the representation of higher

orders derivates of the phase.
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