
EVOLUTIONARY SPECTRUM ESTIMATION FOR UNIFORMLYMODULATED
PROCESSES WITH IMPROVED BOUNDARY PERFORMANCE

Azadeh Moghtaderi, Glen Takahara, David J. Thomson

Queen’s University
Department of Mathematics and Statistics
Kingston, Ontario, Canada, K7L 3N6

ABSTRACT

The evolutionary spectrum (ES) is a time-dependent analogue
of the spectrum of a stationary process. Existing estimators of
the ES suffer from bias problems in the boundary region of the
time-frequency domain, due to windowing effects. We pro-
pose a new estimator of the ES of a uniformly modulated pro-
cess which mitigates these problems. Our estimator is based
on an extrapolation of the ES in time, using an estimate of the
time derivative of the ES. We apply our estimator to a simu-
lated example of a uniformly modulated process with known
ES.

Index Terms— Spectral Analysis, Stochastic Processes

1. INTRODUCTION

Classical methods of time series analysis assume that the sig-
nal under study is a realization of a stationary stochastic pro-
cess. However, many signals of important practical interest
such as those arising in speech, seismology, climatology, and
geophysics are known to exhibit sudden and sporadic behav-
ior [1]; these are features which cannot be captured by sta-
tionary models. Therefore, nonstationarity must be allowed
if one is to do realistic modeling of these (and other) types
of signals. The evolutionary spectrum (ES), introduced by
Priestley [2], is a time-dependent analogue of the spectrum of
a stationary stochastic process, valid for a class of nonstation-
ary processes. The ES describes the local power-frequency
distribution at each instant of time, so it preserves the phys-
ical interpretation of the spectrum of a stationary stochastic
process as a power-frequency distribution.
Since the introduction of the ES, several techniques have

been proposed to estimate it. The evolutionary periodogram
estimator [3], was one of the estimators of the Wold-Cramér
evolutionary spectrum [4]. This method was based on projec-
tions of the spectrum onto the time and frequency directions
using an orthonormal basis set. Thomson [1] independently
introduced the high-resolution spectrogram, which is essen-
tially the same as the evolutionary periodogram with discrete
prolate spheroidal sequences chosen as the basis set [5].

All available estimators of the ES suffer from inherent
problems with time and frequency resolution [3]. Further-
more, due to tapering effects, all available estimators of the
ES suffer from bias at the boundaries of the time-frequency
plane. We suggest an estimator for which this boundary be-
haviour is improved, using an estimated time derivative of the
ES. We demonstrate the applicability of our estimator to uni-
formly modulated processes, which form a subclass of the
class of oscillatory processes.
In Section 2 we review some background regarding the

theory and estimation of evolutionary spectra. In Section 3,
we develop an estimator of the ES with improved time resolu-
tion. In Section 4, we introduce a method to smooth the esti-
mator from Section 3 and extrapolate the time and frequency
boundaries. In Section 5, we demonstrate the performance of
our estimator on a simulated uniformly modulated process.

2. EVOLUTIONARY SPECTRUM: THEORY AND
ESTIMATION

2.1. Evolutionary Spectrum

The evolutionary spectrum, introduced by Priestley [2], gen-
eralizes the notion of a spectral density function to a class of
nonstationary processes. In contrast with the time-invariant
stationary case, the evolutionary spectrum describes the local
power-frequency distribution at each time instant. In this sub-
section, we review the basic theory of evolutionary spectra.
Let X = {Xt}t∈R be a continuous-time nonstationary

process. IfX can be represented in the form

Xt =

∫
R

M(t, f)ei2πft dZX(f), ∀t ∈ R, (1)

where {ZX(f)}f∈R is a complex-valued process with or-
thogonal increments and the functions M(t, f) are “slowly
varying,” (see [2], p.147 for a precise definition) then X is
called an oscillatory process. The function M(t, f) can be
thought of as providing time- and frequency-dependent fre-
quency modulation. We assume thatM(t, f) is continuously
differentiable in t. If X is an oscillatory process, the time-
frequency spectral density or evolutionary spectrum (ES) of
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X is the function

SX(t, f) = |M(t, f)|2SX(f),

where SX(f) df = E{| dZX(f)|2} and E denotes the expec-
tation operator. If X is an oscillatory process, and there ex-
ists a stationary process Y and a nonnegative function C(t)
whose Fourier transform exists, such that X can be repre-
sented as

Xt =

∫
R

C(t)ei2πft dZY(f), ∀t ∈ R, (2)

then X is called a uniformly modulated process (UMP).
Here {ZY(f)}f∈R is the complex-valued process with or-
thogonal increments appearing in the Cramér representa-
tion of Y. The ES of a UMP X is therefore given by
SX(t, f) = |C(t)|2SY(f).

2.2. High-Resolution Spectrogram

Let X be an oscillatory process, and let X0, X1, . . . , XN−1

be a discrete time sample of X. Thomson [1] proposed the
following estimator of the ES ofX, called the high-resolution
spectrogram (HRS):

ŜX(t, f) �
N

K

∣∣∣∣∣
K−1∑
k=0

√
λkν

(k)
t

N−1∑
n=0

ν(k)
n Xne−i2πfn

∣∣∣∣∣
2

. (3)

Here, ν
(k)
t ≡ ν

(k)
t (N, W ), k ∈ {0, 1, . . . , K − 1}, is the

kth discrete prolate spheroidal sequence (DPSS) with associ-
ated eigenvalue λk, and W ∈ (0, 1/2) is the analysis band-
width [5]. The integer K is typically chosen so that K ≤
�2NW � − 1, so that λk ≈ 1 for each k ∈ {0, 1, . . . , K − 1}.
This condition on K makes the HRS essentially the same
as the evolutionary periodogram estimator [3] of the Wold-
Cramér ES [4]. The innovation of the HRS, then, lies essen-
tially in the choice of the DPSSs as data tapers. The DPSSs
ν

(0)
t , . . . , ν

(K−1)
t form a set of pairwise orthonormal data ta-

pers which are optimally concentrated in frequency in the in-
terval (−W, W ).
There are key drawbacks with the HRS estimator. First,

since it uses the entire sample from X to produce an esti-
mate, there are problems with its time resolution. Second,
since the DPSSs tend to zero as t → 0 and t → N − 1, the
HRS estimator artificially tends to zero as (t, f) → (0, f) and
(t, f) → (N − 1, f), for each f ∈ [−1/2, 1/2].

2.3. Nonstationary Quadratic-Inverse Theory

Let X be an oscillatory process, and let X0, X1, . . . , XN−1

be a discrete time sample ofX. The nonstationary quadratic-
inverse (NSQI) theory, developed by Thomson [1], proposed
an estimator of the ES of X based on the approximate linear

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

Time

A
l(t

)

Fig. 1. Sequences Al(t); N = 200 andW = 1
40 ; l = 0 (solid

line), l = 1 (thick dashed line), and l = 2 (thin dashed line).

expansion

SX(t, f) ≈

L∑
l=0

al(f)Al(t). (4)

Here, al(f), l ∈ {0, 1, . . . , L} are unknown expansion co-
efficients and Al(t) ∈ R, t ∈ {0, 1, . . . , N − 1}, l ∈
{0, 1, . . . , L}, are the orthonormalized solutions of the al-
gebraic eigenvalue equation

αlAl(n) = N

N−1∑
m=0

[
sin 2πW (n − m)

π(n − m)

]2

Al(m) (5)

for some fixed analysis bandwidthW ∈ (0, 1/2). It is known
that the eigenvalues αl satisfy αl ≈ max(2NW − l/2, 0) for
l ∈ {0, 1, . . . , �4NW �}. The sequences Al(·) are shown in
Fig. (1) forN = 200 andW = 1/40.
From Eq. (4), it can be seen that if one has an estimate of

the ES of X available, then one can estimate the expansion
coefficients al(f). Using the HRS, Thomson [1] proposes the
estimators

âl(f) �
K

Nαl

N−1∑
t=0

ŜX(t, f)Al(t). (6)

Thomson [1] describes the approximate relationships be-
tween the time derivatives of SX(t, f) and the expansion co-
efficients al(f). First, since the zeroth-order sequence A0(t)
is approximately constant, the coefficient â0(f) is approxi-
mately the standard multitaper spectrum estimate [5]. Sim-
ilarly, since the first-order sequence A1(t) is approximately
linear, â1(f) is approximately the time-derivative of the ES.

3. SLIDING-WINDOW HRS

For the remainder of this paper we consider only uniformly
modulated processes. Let X be a UMP and let the discrete
time sample ofX be given byX0, X1, . . . XN−1. SinceX is
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a UMP, the modulation happens only in the t-direction; as a
result, time resolution is of higher importance than frequency
resolution. To improve the time resolution of the HRS esti-
mator, in this section we propose the sliding-window high-
resolution spectrogram (SWHRS).
First, define overlapping time blocks of length B 
 N ,

a compromise between time and frequency resolution, where
the overlap is B − 1. The blocks are indexed by the base time
b ∈ {0, 1, . . . , N − B}. The HRS for the bth block and for
t ∈ {b, b + 1, . . . , b + B − 1},

ŜX,b(t, f) �
B

K

∣∣∣∣∣
K−1∑
k=0

√
λkν

(k)
t

B−1∑
n=0

X
(b)
n+bν

(k)
n e−i2πfn

∣∣∣∣∣
2

,

where ν
(k)
t and K are as in Section 2.2. Due to the block-

ing, for each fixed f , the SWHRS produces more than
one estimate of SX(t, f). One approach is to use the bth

block to estimate the ES at only the middle time point
of the block, denoted by tb � b + �B

2 �. Thus, for t ∈

{�B
2 �, �

B
2 � + 1, . . . , (N − 1) − �B

2 �}, the ES at (t, f) is
estimated by ŜX,b(tb, f), using block b = t − �B

2 �.
The SWHRS estimates at other (t, f) pairs, i.e., t < �B

2 �

or t > N − 1 − �B
2 �, which are referred to as boundary re-

gions, are considered to be unavailable and must be estimated
by other means. We consider the boundary regions as well as
a modification to the ES estimate for all t in the next section.

4. TAYLOR SERIES APPROXIMATION TO THE
EVOLUTIONARY SPECTRUM

In this section, we develop a technique to estimate the bound-
ary regions using the SWHRS estimator. The technique we
propose smooths the SWHRS estimate at the available time
points, as well as estimating the boundary regions using the
information from the smoothed SWHRS.
Let X be a UMP. Let SX,b(t, f) denote the ES of X in

the bth block, i.e., SX,b(t, f) = SX(t, f) with t restricted so
that t ∈ {b, b + 1, . . . , b + B − 1}. Assume that, at a fixed
frequency f , SX,b(t, f) can be well approximated by the first
two terms of its Taylor series expansion around the middle
time point tb:

SX,b(t, f) ≈ SX,b(tb, f) + S
(1)
X,b(tb, f)(t − tb), (7)

where S
(1)
X,b(tb, f) denotes the time derivative of SX,b(t, f)

evaluated at (tb, f).
Recall from Section 2.3 that we assumed the ES has the

approximate expansion shown in Eq. (4). Here we assume
that a similar expansion holds for each SX,b(t, f), i.e.,

SX,b(t, f) ≈

Lb∑
l=0

al,b(f)Al(t), (8)

where al,b(f) are the coefficients in block b. Using the two
representations of the ES from Eqs. (7) and (8), we have for
each block b

Lb∑
l=0

al,b(f)Al(t) ≈ SX,b(tb, f) + S
(1)
X,b(tb, f)(t − tb).

Multiplying both sides of the above equation by Am(t), sum-
ming over t and using the fact that the sequences Al(t) are
orthonormal, we obtain

Bal,b(f) ≈ SX,b(tb, f)

b+B−1∑
t=b

Al(t)

+ S
(1)
X,b(tb, f)

b+B−1∑
t=b

Al(t)(t − tb).

For l = 0 and l = 1, the above equation simplifies to

SX,b(tb, f) ≈
Ba0,b(f)∑b+B−1
t=b A0(t)

(9)

S
(1)
X,b(tb, f) ≈

Ba1,b(f)∑b+B−1
t=b A1(t)(t − tb)

. (10)

To derive these two expressions, we have also used the facts∑b+B−1
t=b A0(t)(t − tb) = 0 and

∑b+B−1
t=b A1(t) = 0.

Now let X0, X1, . . . XN−1 be a discrete time sample
of X. Block this sample and compute ŜX,b(t, f) in each
block, as explained in Section 3. The coefficients a0,b(f) and
a1,b(f) can be estimated as in Section 2.3 using the SWHRS
estimate: For l = 0, 1,

âl,b(f) =
K

Bαl

b+B−1∑
t=b

ŜX,b(t, f)Al(t).

Plugging these estimates into Eqs. (9) and (10) yields estima-
tors of SX,b(t, f) and S

(1)
X,b(t, f) at the middle time point tb.

Explicitly, we have

ŜX,b,M (tb, f) �

K
α0

∑b+B−1
t=b ŜX,b(t, f)A0(t)∑b+B−1

t=b A0(t)
(11)

Ŝ
(1)
X,b,T (tb, f) �

K
α1

∑b+B−1
t=b ŜX,b(t, f)A1(t)∑b+B−1
t=b A1(t)(t − tb)

. (12)

We call the estimator ŜX,b,M (tb, f) the Modified ES Estima-
tor (MESE), and we call the estimator Ŝ(1)

X,b,T (tb, f) the Time-
Derivative ES Estimator (TDESE).
As a result of blocking, the MESE and TDESE can be

evaluated only at tb ∈ [�B
2 �, (N − 1)−�B

2 �]. In other words,
the MESE and TDESE estimates are not available at times
before the middle time point of the first block, t0, and after
the middle time point of the last block, tN−B+1. We now
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describe a technique to estimate evolutionary spectra at times
outside this range.
Using the blockwise Taylor series expansion of the ES of

X from Eq. (7), SX,b(t, f) can be extrapolated h time steps
ahead by

ŜX,b,M (tb ± h, f) ≈ ŜX,b,M (tb, f)± h Ŝ
(1)
X,b,T (tb, f), (13)

where h ∈ {1, 2, . . . , �B
2 �}. The final estimate of SX(t, f)

is then taken to be ŜX,b,M (t, f) from Eq. (11) for t ∈

[�B
2 �, (N − 1) − �B

2 �] and ŜX,b,M (t, f) from Eq. (13) for
t ∈ {0, 1, . . . , �B

2 �− 1} and t ∈ {N −�B
2 �, . . . , N − 1}. We

refer to this combination as the Boundary-CorrectedModified
ES Estimate (BCMESE). In the next section, we demonstrate
the performance of the BCMESE in estimating the ES of a
simulated UMP.

5. EXAMPLE

Following an example from Priestley [2], let X be a UMP of
the form

Xt =

(
2 − e

−(t−500)2

2(200)2

)
Yt,

where Y = {Yt}t∈Z is the second-order autoregressive pro-
cess

Yt = 0.8Yt−1 − 0.4Yt−2 + εt.

Here {εt}t∈Z is a white noise process with variance 104. The
spectrum ofY is therefore

SY(f) =
104

1 − 2.24 cos(2πf) + 1.6 cos2(2πf)
.

The theoretical ES ofX is

SX(t, f) =

(
2 − e

−(t−500)2

2(200)2

)2

SY(f). (14)

We generate 100 realizations ofX of lengthN = 1000. With
a compromise block size ofB = 200, we applied the HRS es-
timator, SWHRS estimator, and BCMESE to each realization
ofX to estimate its ES. For each estimator, the final estimate
was taken to be the average over all 100 realizations. Figure
2 shows each final estimate and the theoretical ES ofX.

6. CONCLUSION

In this paper, we proposed an estimator of the ES of a UMP.
The estimator was derived using an estimate of the time
derivative of the ES. The main advantage of our estimator
is that it has much better boundary behaviour in the time-
frequency region versus existing windowed estimates such
as HRS. Moreover, our estimator has better time resolution
compared with the HRS estimator [1].
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Fig. 2. Theoretical ES ofX (thick solid blue line), HRS esti-
mate (thin dashed pink line), SWHRS estimate (thick dashed
black line), BCMESE (thin solid red line) at f = 0.0483 cy-
cles per time unit (top figure) and t = 300 (bottom figure).
The SWHRS estimate is not defined in the boundary regions.
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