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ABSTRACT

The S transform is a useful linear time-frequency
distribution and has been applied to various fields. Since the
inverse S transform is an over-determined problem, there
exist several different algorithms, which result in different
filtering effects. This paper models the discrete S transform
in matrix form and proposes a new inverse S transform
algorithm with least square error in filters. This paper also
compares the new inverse S transform with the previous
ones.

Index Terms— S transform, time-frequency analysis,
time-varying filter

1. INTRODUCTION

Time-frequency analysis, which can analyze a signal in both
the time and frequency domains simultaneously, is a
powerful tool for signal processing. Researchers have
proposed many kinds of algorithms for time-frequency
analysis, including linear, bilinear, and the other ones. One
advantage of the linear time-frequency analysis is its high
efficiency and flexibility in the time-frequency filters, which
can be achieved by multiplying the time-frequency
distribution by a weighting function. Two of the most well-
known linear time-frequency distributions are the short-time
Fourier transform (STFT) and wavelet transform (WT) [1].

The S transform (ST) can be considered as a hybrid of
the STFT and WT [2]. The ST has a form similar to the
STFT except that the window’s width in the ST can be
changed with frequency. Therefore, the ST can provide the
progressive resolution like that in the WT. Besides, the ST
uses the time-frequency axis rather than the time-scale axis
used in the WT. Therefore, the interpretation of the
frequency information in the ST is more straightforward than
in the WT. The ST has been shown useful and applied to
various fields including medical imaging [3], geophysics [4],
and electrical engineering.

Because the inverse S transform (IST) is an over-
determined problem, there exist several different algorithms,
which may result in different filtering effects. Stockwell et
al.’s algorithm was efficient but suffers from the problem of
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time leakage in filters [2]. Schimmel and Gallart’s algorithm
provided better time localization in filters but contained the
reconstruction errors [5]—[9]. The time-frequency filter’s
performance is significantly influenced by the inverse
algorithm. Since the ST is a powerful time-frequency
distribution, it is important to find an IST algorithm that will
provide satisfactory performance in the filters.

In this paper, the discrete ST is modeled in matrix form
and a new IST is proposed that has least square error in the
time-frequency filters.

This paper is organized as follows. Section 2 briefly
reviews and discusses the STs and ISTs. The new IST is
derived in Section 3, along with the experiments in Section 4.
The performance of the ISTs are discussed and concluded in
Section 5.

2. REVIEW OF ST AND ITS INVERSE
2.1. S Transform

The ST, derived by Stockwell et al. [2], of a time series u(f)
is

©
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where the w(z, f) isiusually a Gaussian window
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T and t are time variables and f is a frequency variable. The
parameter & can be used to adjust the width of the window
and the tiling in the time-frequency domain. All & is set to
unity in this paper unless otherwise stated. The Gaussian
window can be replaced by other windows as long as the
area under it is equal to 1 [10].
To simplify the computation, Stockwell et al. proposed
another equivalent form of the ST:
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where U(a) is the Fourier transform of u(7). Therefore, the
ST can be derived in the frequency domain.

ei2ﬂarda ) (3)

2.2. Stockwell et al.’s Inverse S Transform
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Since the area under the window, as a function of 1, is equal
to 1 for every fixed f, an efficient IST is derived by
Stockwell et al..

[steie= Jut )“
- j { j S(r, f)dr}”’”"'df. (5)

The Stockwell et al.’s IST during filtering is
up(t j { j S(z, f)F(z f)df}elwfdf (6)
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where the F(z, f) is the time-frequency filter.

The disadvantage of this IST is that the imposed time
localization of the filter may not be correctly inherited by the
output time series.

2.2. Schimmel and Gallart’s Inverse S Transform

To improve the problem of time leakage in (6),
Schimmel and Gallart proposed another algorithm [5].
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where (7) is the normal IST and (8) is the IST with a filter
F(t, f). Because this IST integrates only over the frequency,
the time localization of the filter will be correctly inherited
by the output time series.

However, the output time series contains a
reconstruction error [6]—[9].
u, (¢) = u(t)*1(r) )
where “*” denotes the convolution and
0 *f.ztz
1(e)= e 2 e™"df . (10)

It was shown that this reconstruction error decreased with
increasing k [9]. Therefore (7) and (8) can regarded as
satisfactory approximations when k& >1. An alternative is to
retrieve the correct signal by applying the deconvolution of
1(1) for u,(%) or up(1) [6].

3. DISCRETE IST WITH LEAST SQUARE ERROR

The discrete ST equations are:
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S[m,n]= Zu[p] [ | ei , n#0 (11)
or
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S[m,n]= Z Ull+nle n#0 (12)
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where p and m are the time variables and » is the frequency
variable. Although the continuous time STs (1) and (3) are
equivalent to each other, the discrete STs (11) and (12) are
slightly different [9]. Usually the size of S[m,n] is NxN
because the FT is used.

Since the ST is a linear transform, it can be modeled in
matrix form. Let u be a Nx1 vector, s be a N°x1 vector, and
T be a N’xN matrix representing the time series, unfolded
time-frequency distribution, and transformation matrix of the
ST, respectively. The ((i-1)xN+1)th to (ixN)th elements of
the vector s correspond to the elements in the ith column of
the matrix S[m,n]. Therefore the discrete ST can be modeled
as

s =Tu. (14)
The matrix T can be derived as follows. Let T; represent the
ith column vector of the matrix T. When u is the Kronecker
delta function d(p-i), the time-frequency distribution vector s
is equivalent to the column vector T;. In other words, the
column vector T; is the discrete ST of the Kronecker delta
function d(p-i). Therefore, from (11) the element T, of the
matrix T is

| | _Fv=bf i2aby
v 2k*N? e N
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where v is the smallest non-negative integer that satisfies y =
a (mod N) and v = [a/ N ] is the largest integer smaller than

T, = (15)

or equal to (a/N). The transformation matrix T of (12) is
slightly different. The closed-form solution of this matrix is
too complex to be found. The alternatives are calculating the
matrix numerically from (12) or using (15) as an
approximation.

The new IST can be derived from (14):

u=T"s (16)
where “+” denotes the pseudo inverse and T* = (T*T)'T*
where T* is the conjugate transpose of the matrix T.

The new IST in filters is

u;=T*(Fs). (17)
where F is the N’xN” filter matrix in which the weighting
function is set on the diagonal elements and zero value is set
on the others. Another method is to impose the filter before
transforming the matrix S[m,n] into the vector s.

The back transformed signals from the normal ISTs (5)
and (16) are equivalent since the time-frequency distribution
is not modified. However, because the ISTs (6), (8) and (17)
have different filtering effects, the back transformed signals
after filtering are different. From the developed theory in the
field of linear algebra, it is known that the back transformed
signal from (17) will have the least square error in the time-
frequency domain, which means that the mean square of
(Tuy—Fs) is smaller than or equal to that of (Tu—Fs) for all
time series u. This is an important property in evaluating the



Example in Sec. 4.1 | Example in Sec. 4.2

MSErr MSEr MSErr MSEr

IST (6) 0.5777 0.0298 1.1267 0.0656

IST (8) 0.5434 0.0655 1.0773 0.0781
Proposed

IST (17) 0.4907 0.0355 0.9349 0.0482

Table 1. The MSEr and MSE; of the back transformed
signals for the examples in Sec. 4.1 and 4.2. The minimum
MSE+r and MSE were highlighted by using bold font.

performance of the ISTs in filters. The IST (17) will provide
the optimal solution in the least-squares sense.

4. EXPERIMENTS

Consider the synthetic signal: s’(t) = s(t)+ n(t) , where s() is
the source signal and n(?) is the noise. The objective is to
retrieve the source signal s(f) from the noisy signal s'(¥) by
filtering in the time-frequency domain. The mean-square-

error  (MSE) of the time series is defined as:
MSET:%ZV;:(uf[p]—u[p])z . The MSE of the time-
frequency distribution is defined as:
MSE s =z 2 36, Il Sl where S{man s

the ST of the filtered time series u(p). The MSEs of the
retrieved signals from the three ISTs are compared in this
section.

4.1. Adaptive filtering in time-frequency spectrum

2

The source signal was defined as: s(t)zZeiE cos(47z't).

3 3
n(t) = cos| 27| t +—— ||+ cos| 2| 31 L was the noise
300 300

function. The sampling frequency was 10Hz and the time
period was —10 to 10s. The time-frequency distribution of
the synthetic signal s’(f) was plotted in Fig. 1(a), along with
the time-frequency filter in Fig. 1(b). The source signal and
the back transformed ones from the ISTs (6), (8) and (17)
were shown in Fig. 2(c). The MSErr and MSE+ of the back
transformed signals from the ISTs were shown in Table
1.The proposed IST (17) provided the minimum MSEry and
the IST (6) provided the minimum MSEf.

4.2. Noise Reduction

The source signal was defined as:

3
s(t) = 005(8711 - %] , with a sampling frequency of
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Fig. 1. (a) The time-frequency distribution of the synthetic
signal for the example in Sec. 4.1. (b) The time-frequency
filter. (c) The source signal and the back transformed ones
from the ISTs (6), (8) and (17). Their MSEyz and MSEr
were shown in Table 1. The proposed IST (17) provided the
minimum MSEqrs and the IST (6) provided the minimum
MSEf.

10Hz and a duration of 20s. The noise function n(z) was the
Gaussian noise with zero mean and variance 0.3. The time-
frequency distribution of the synthetic signal s’(f) was
plotted in Fig. 2(a), along with the time-frequency filter in
Fig. 2(b). The back transformed signals from the ISTs (6), (8)
and (17) were shown in Fig. 2(c) and compared with the
source signal. The MSErr and MSEr of the back
transformed signals from the ISTs were shown in Table
1.The proposed IST (17) had the minimum MSE; and
MSEry.

5. CONCLUSION

This paper discussed the algorithms of IST. A new IST was
proposed and compared with the Stockwell et al.’s and
Schimmel and Gallart’s ones. The experimental results
showed that the proposed IST had least square error in the
time-frequency filters. Its performance was guaranteed. The
experimental results also showed that the back transformed
signal that had the minimum MSEr did not necessarily had
the minimum MSEj. In fact, the MSEt was influenced not
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Fig. 2. (a) The time-frequency distribution of the synthetic
signal for the example in Sec. 4.2. (b) The time-frequency
filter. (c¢) The source signal and the back transformed ones
from the ISTs (6), (8) and (17). Their MSEr and MSE¢
were shown in Table 1. The retrieved signal from the
proposed IST (17) had the minimum MSE+r and MSEr.

only by the inverse algorithms but also by the time-
frequency filters. How to find the optimal time-frequency
filter is another problem and not discussed in this paper.

Since there are several IST algorithms, different IST
can be chosen for different purpose. When the time
localization is the main concern and the filter is a low-pass
one, the Schimmel and Gallart’s IST can provide
satisfactory result, especially when £ is large enough. When
the frequency localization is the main concern and the filter
is high-pass, the Stockwell et al. IST is a good choice. When
the mean-square-error is the main concern, the proposed IST
has the best performance.

6. REFERENCES

[1] S. Qian and D. Chen, Joint Time-Frequency Analysis:
Methods and Applications, Prentice-Hall, 1996.

[2] R. G. Stockwell, L. Mansinha, and R.P. Lowe,
“Localization of the complex spectrum: the S transform,”
IEEE Trans. Signal Process., vol. 44, no. 4, pp. 998-1001,
Apr. 1996.

[3] H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G.
S. Mayer, A. G. Law, L. Mansinha, and J. R. Mitchell, “ A
new local multi-scale Fourier analysis for medical imaging,”
Med. Phys., vol. 30, pp. 1134-1141, Jun. 2003.

[4] C. R. Pinnegar and D. E. Eaton, “Application of the S
transform to prestack noise attenuation filtering,” J. Geophys.
Res., vol. 108, no. B9, pp. 2422, Sep. 2003.

[5] M. Schimmel and J. Gallart, “The inverse S-transform in
filters with time-frequency localization,” /EEE Trans. Signal
Process., vol. 53, no. 11, pp. 4417-4422, Nov. 2005.

[6] S. C. Pei and P. W. Wang, “Modified inverse S
transform for filtering in time-frequency spectrum”, ICASSP
2007, vol. 3, pp. 1169-1172, Apr. 2007.

[7] C. R. Pinnegar, “Comments on ‘The inverse S-transform
in filters with time-frequency localization’,” IEEE Trans.
Signal Process, vol. 55, no. 10, pp. 5117-5120, Oct. 2007.
[8] M. Schimmel and J. Gallart, “Author’s reply to
comments on ‘The inverse S-transform in filters with time-
frequency localization’,” [EEE Trans. Signal Process, vol.
55, no. 10, pp. 5120-5121, Oct. 2007.

[9] C. Simon, S. Ventosa, M. Schimmel, A. Heldring, J. J.
Danobeitia, J. Gallart and A. Manuel, “The S-Transform and
Its Inverse: Side Effects of Discretizing and Filtering”, [EEE
Trans. Signal Process, vol. 55, no. 10, pp. 4928-4937, Oct.
2007.

[10] C. R. Pinnegar and L. Mansinha, “The S-transform with
windows of arbitrary and varying shape,” Geophysics, vol.
68, no. 1, pp. 381-385, Jan. 2003.

2992



