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ABSTRACT

Digital compensation of nonlinear systems is an important topic in
many practical applications. This paper considers the problem of
predistortion of nonlinear systems described using Volterra series by
connecting in tandem an adaptive Volterra predistorter. The sug-
gested Direct Learning Architecture (DLA) approach utilizes the
Spectral Magnitude Matching (SMM) method that minimizes the
sum squared error between the spectral magnitudes of the output
signal of the nonlinear system and the desired signal. The coeffi-
cients of the predistorter are estimated recursively using the gener-
alized Newton iterative algorithm. A comparative simulation study
with the Nonlinear Filtered-x Least Mean Squares (NFxLMS) algo-
rithm shows that the suggested SMM approach achieves much better
performance but with higher computation complexity.

Index Terms— Adaptive systems, nonlinear systems, parameter
estimation, spectral analysis, Volterra series.

1. INTRODUCTION

In many areas, cancelling or reducing the nonlinear distortion due to
the nonlinearity characteristic of the electronic or electromechanical
devices are becoming more and more important. Examples can be
found in communication systems, speech processing and control en-
gineering, see [1-3]. Two kinds of adaptive compensation techniques
can be used to reduce the nonlinear distortion, which are adaptive
postdistortion, also named as adaptive equalization, and adaptive
predistortion [1]. Although the postdistortion is an effective way
to compensate the nonlinear distortion, the predistortion is more ef-
ficient and necessary in many other situations, such as compensation
of the nonlinear distortion for the power amplifiers in satellite com-
munication [4] and the active noise cancellation for loudspeakers [5].

Predistortion of nonlinear Volterra systems based on the Direct
Learning Architecture (DLA) approach and using the Nonlinear
Filtered-x Least Mean Squares (NFxLMS) algorithm has been con-
sidered in [3, 6]. The idea in [3, 6] is to connect a nonlinear
Volterra predistorter tandemly with the nonlinear Volterra system
and adaptively adjusting the coefficients of the predistorter in order
to minimize the mean square distortion. These coefficients were
estimated recursively using the NFxLMS algorithm. The problems
usually encountered while using the NFxLMS algorithm are slow
convergence and need of accurate identification of the nonlinear
Volterra system.

In [7], a method was introduced for estimating telephone hand-
set nonlinearity by matching the spectral magnitude of the distorted
signal to the output of a nonlinear channel model. The nonlinear
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Fig. 1. Adaptive predistortion of nonlinear systems.

model was chosen as a Wiener-Hammerstein cascade system with a
static nonlinearity described by a finite-order polynomial. The non-
linear model coefficients were estimated using the generalized New-
ton iterative algorithm [8, 9] that minimizes a cost function of the
sum squared error between the spectral magnitudes - evaluated for a
number of short-time frames - of the measured distorted signal and
the output signal of the nonlinear model.

In this paper, the same approach of [7] is used for the purpose
of predistortion of nonlinear Volterra systems. Also here, the co-
efficients of the Volterra predistorter are estimated recursively us-
ing the generalized Newton iteration algorithm to minimize the sum
squared error between the spectral magnitudes of the output signal
of the nonlinear Volterra system and the desired signal. The sug-
gested Spectral Magnitude matching (SMM) approach presented in
this paper does not require the identification of the nonlinear Volterra
system as in [3, 6].

The paper is organized as follows. In Sec. 2, the DLA approach
is discussed. A brief review of the NFxLMS algorithm is given in
Sec. 3. The SMM method is introduced in Sec. 4. In Sec. 5, simula-
tion results are given. Conclusions are presented in Sec. 6.

2. THE DIRECT LEARNING ARCHITECTURE

The DLA approach of this paper, see Fig. 1, assumes that the non-
linear system H (q) to be compensated is a discrete-time invariant
causal system. Also, the system H (q) with input and output sig-
nals y(n) and z(n) can be modeled by qth-order Volterra series with
M -tap memories. Hence, the output z(n) is given by

z(n) =

q∑
k=1

⎛
⎝M−1∑

i1=0

..

M−1∑
ik=0

hk(i1, .., ik)y(n− i1)..y(n− ik)

⎞
⎠

(1)
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where hk(i1, · · · , ik) are the kth-order kernels of the nonlinear sys-
tem.

Similarly, the relation between the input and output of the adap-
tive Volterra predistorter C(p) is given by

y(n) =

p∑
k=1

⎛
⎝N−1∑

i1=0

..

N−1∑
ik=0

ck(i1, .., ik; n)x(n− i1)..x(n− ik)

⎞
⎠
(2)

where N is the number of memories and ck(i1, · · · , ik; n) are the
kth-order kernels of this predistorter. According to the pth-order
Volterra theorem [10], the Volterra filter C(p) can remove nonlin-
earities up to pth-order provided that the inverse of the first-order
Volterra system is causal and stable.

Let us define the parameter vector C of the adaptive Volterra
predistorter as

C =

⎛
⎜⎝

C1

...
Cp

⎞
⎟⎠ , (3)

where Ck is given by

Ck =

⎛
⎜⎝

ck(0, · · · , 0)
...

ck(N − 1, · · · , N − 1)

⎞
⎟⎠ . (4)

Also, assume that the desired signal d(n) is given as

d(n) = x(n− τ) + v(n), (5)

where τ is the time delay necessary to have a causal Volterra predis-
torter and v(n) is AWGN.
Remark 1: The time delay τ equals zero in case the system to be
compensated is minimum phase [3].

The main goal of digital predistortion is to estimate the paramter
vector C such that the output signal z(n) becomes very close to the
desired signal d(n). This estimation process can be done directly or
indirectly. Indirect learning Architecture (ILA) approach for predis-
tortion of nonlinear Volterra systems was introduced in [11, 12] us-
ing Recursive Least Squares (RLS), Kalman Filter (KF) and Recur-
sive Prediction Error Method (RPEM) algorithms. The work done
in [3, 6] considers direct estimation of the parameter vector C using
the NFxLMS algorithm. Also in this paper, the SMM method is used
for direct estimation of C . The NFxLMS algorithm and the SMM
method are discussed in the next sections.

3. THE NFXLMS ALGORITHM

The kernels of the adaptive Volterra filter were estimated in [3], see
Fig. 2, by minimizing the mean square distortion defined as

E{e2(n)} = E{[d(n)− z(n)]2} (6)

where E denotes the expectation and d(n) is the desired signal de-
fined in Eq. (5).

The NFxLMS algorithm of [3] was obtained by applying the
stochastic gradient algorithm [13]:

Ĉk(n + 1) = Ĉk(n)− μk

2
Δk(n) (7)

where μk is a small positive constant that controls stability and rate
of convergence of the adaptive algorithm and usually is defined as
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Fig. 2. Adaptive predistortion using the NFxLMS algorithm.

the step-size parameter. Also, the gradient vector Δk(n) is defined
as

Δk(n) =

⎛
⎜⎜⎝

∂e2(n)
∂ck(0,··· ,0;n)

...
∂e2(n)

∂ck(N−1,··· ,N−1;n)

⎞
⎟⎟⎠ . (8)

Taking into consideration that (cf. Eq. (6))

∂e2(n)

∂ck(i1, · · · , ik; n)
= −2e(n)

∂z(n)

∂ck(i1, · · · , ik; n)
(9)

where ∂z(n)
∂ck(i1,··· ,ik;n)

can be written as

∂z(n)

∂ck(i1, · · · , ik; n)
=

M−1∑
r=0

g(r; n)
∂y(n− r)

∂ck(i1, · · · , ik; n)
. (10)

Here g(r; n) is given as

g(r; n) =
∂z(n)

∂y(n− r)
= h1(r) + 2

M−1∑
i=0

h2(r, i)y(n− i)

+ 3

M−1∑
i1=0

M−1∑
i2=0

h3(r, i1, i2)y(n− i1)y(n− i2) + · · ·

(11)

Assuming that μk is chosen sufficiently small, ∂y(n−r)
∂ck(i1,··· ,ik;n)

can be
approximated as (cf. Eq. (2))

∂y(n− r)

∂ck(i1, · · · , ik; n)
≈ ∂y(n− r)

∂ck(i1, · · · , ik; n− r)

= x(n− r − i1) · · ·x(n− r − ik).

(12)

Substituting by Eqs. (10)-(12) in Eq. (9), we have

∂e2(n)

∂ck(i1, .., ik; n)
=−2e(n)

M−1∑
r=0

g(r; n)x(n−r−i1)..x(n−r−ik).

(13)
Remark 2: In Eq. (11), it is assumed that the correct kernels of the
nonlinear system H (q) are known or have been estimated. The prob-
lem of estimating Volterra kernels for nonlinear systems is discussed,
e.g., in [14].
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Fig. 3. Adaptive predistortion using the SMM approach.

4. THE SPECTRAL MAGNITUDE MATCHING METHOD

The Spectral Magnitude Matching (SMM) method [7], see Fig. 3,
minimizes the sum squared error between the spectral magnitude of
the desired signal d(n) and the spectral magnitude of the received
signal z(n) through the following cost function:

VC =

K−1∑
k=0

L−1∑
l=0

[|D(ωl; k)| − |Z(ωl; k; C)|]2 (14)

where D(ωl; k) and Z(ωl; k; C) are the short-time DFT of the de-
sired and output signals, respectively. K is the number of uniformly-
spaced short-time frames and L is the DFT length.

The cost function VC can be written as

VC = ΓT
CΓC (15)

where

ΓC =

⎛
⎜⎜⎜⎝

γ0(C)
γ1(C)

...
γK−1(C)

⎞
⎟⎟⎟⎠ (16)

and

γk(C) =

⎛
⎜⎝

|D(ω0; k)| − |Z(ω0; k; C)|
...

|D(ωL−1; k)| − |Z(ωL−1; k; C)|

⎞
⎟⎠ , (17)

k = 0, · · · , K − 1.
The parameter vector C that minimizes the cost function VC

can be estimated using the generalized Newton iteration [8, 9]. In
this case, we have

Ĉ(m + 1) = Ĉ(m) + μ Δ(m) (18)

where m is the iteration index, μ is the adaptation gain, and the
gradient Δ(m) is given by [7, 13, 15]

Δ(m) = −
[

d2VC

dC2

]−1 [
dVC

dC

]

= −
(
JT (m)J(m)

)−1

JT (m) ΓC |C=Ĉ(m) .

(19)

Here J(m) is the Jacobian matrix of first derivative of ΓC with re-
spect to C evaluated at C = Ĉ(m), i.e.

J(m) =
dΓC

dC
|C=Ĉ(m)=

⎛
⎜⎜⎜⎝

J0(m)
J1(m)

...
JK−1(m)

⎞
⎟⎟⎟⎠ (20)

where

Jk(m) =
dγk(C)

dC
|C=Ĉ(m)

= −

⎛
⎜⎜⎝

d|Z(ω0;k;C)|
dC
...

d|Z(ωL−1;k;C)|
dC

⎞
⎟⎟⎠

|
C=Ĉ(m)

,
(21)

k = 0, · · · , K − 1.
Due to the fact that there is no close form expression for the

gradient Δ(m), an approximate gradient was evaluated in [7] by
finite element approximation. The same approach is considered in
this paper. The approximation follows the following lines:

1. Initiate with a parameter vector Ĉ(0) and compute the DFT
magnitude |D(ωl; k)|.

2. Compute the DFT magnitude |Z(ωl; k; Ĉ)| based on the cur-
rent value of the parameter vector Ĉ(m) and form ΓC .

3. Recalculate z(n; Ĉ) for each perturbed component of Ĉ(m)
and then compute its DFT magnitude. The (i, j) element of
the matrix element Jk(m) denoted as Jk

i,j(m) is evaluated

using a first backward difference for each element of Ĉ(m)
as

Jk
i,j(m) =

∂γk
i (Ĉ ; m)

∂ĉj(m)

≈ − 1

εm
(|Z(ωi; k; ĉ1(m), · · · , ĉj(m) + εm, · · · )|
− |Z(ωi; k; ĉ1(m), · · · , ĉj(m), · · · )|)

(22)

where γk
i (Ĉ ; m) is the ith element of γk(Ĉ), ĉj(m) is the

jth element of the parameter vector Ĉ(m) and εm is a small
adaptive perturbation evaluated as

εm =
VC (m)

VC (0)
ε0 (23)

where ε0 is the initial perturbation, VC (0) is the initial value
of VC , and VC (m) is the mth step value of VC . This means
that the perturbation decreases proportionally with the error.

4. Finally, evaluate the correction term Δ(m) from Eq. (19) and
update the parameter vector Ĉ using Eq. (18).

Remark 3: Regardless the fact that the SMM approach does not
require the nonlinear Volterra system to be first identified like the
NFxLMS algorithm, its computation complexity is higher than the
NFxLMS algorithm. Future research will consider the possibility of
reducing the computation complexity of the SMM method.

5. SIMULATION STUDY

In order to investigate the performance of the suggested SMM ap-
proach as compared to the NFxLMS algorithm for predistortion of
nonlinear Volterra systems using adaptive Volterra predistorter, the
following simulations were performed.

The nonlinear system H (q) is assumed to be a known second-
order Volterra system. The adaptive Volterra predistorter C(p) is also
assumed to be a second-order Volterra filter, i.e. q = p = 2. Also,
the number of memories in the adaptive predistorter was chosen as
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Fig. 4. PSDs for input and output signals.

N = 4. The input-output relation of the nonlinear system H (2) is
given by

z(n) = H (2)[y(n)] = H1[y(n)] + H2[y(n)] (24)

where the first-order kernels vector H1 and the second-order kernels
matrix H2 are given as

H1 =
(

0.5625 0.4810 0.1124 −0.1669
)

(25)

H2 = 0.01×
⎛
⎝ 1.7499 0 0

0 0 −0.8750
0 −0.8750 0

⎞
⎠ . (26)

The input signal was chosen as a random signal with uniform
distribution over (−1, 1). The frequency band of the input is limited
to prevent aliasing [10]. For the SMM approach, a data length of
104 samples divided into 20 short-time frames have been used each
with length 500 samples. The DFT length L was 250 and a Han-
ning window [16] was used. The SMM method was initialized with
Ĉ(0) = 1. An initial perturbation of ε0 = 0.1 and adaptation gain
of μ = 0.9 were used. For the NFxLMS algorithm, a data length of
5× 104 and step sizes of μ1 = μ2 = 0.1 have been used.

Figure 4 shows power spectral densities (PSDs) of the output
signals of the nonlinear Volterra system with and without the pre-
distorter. The performance of the SMM approach and the NFxLMS
algorithm are given for signal to noise ratios (SNRs) of 40 dB and
60 dB. From this figure, we can see that the Volterra predistorter
using the SMM approach significantly reduce spectral regrowth and
achieves much better performance than the NFxLMS algorithm.

6. CONCLUSIONS

Adaptive predistortion of nonlinear Volterra systems based on the
Spectral Magnitude Matching (SMM) method has been considered
in this paper. The SMM method is based on minimizing the differ-
ence between the spectral magnitudes of the output and the desired
signals. The coefficients of the adaptive Volterra predistorter are esti-
mated using the generalized iterative Newton algorithm. Simulation
results show that the suggested approach can significantly suppress
spectral regrowth and achieves much better results than the NFxLMS
algorithm. The drawback of the suggested SMM approach is the
high computation complexity. Future research will focus on reduc-
ing the computation complexity of the SMM method.
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