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ABSTRACT

In this paper we propose a new measure of conditional independence
that is loosely based on measuring the L2 distance between the con-
ditional joint and the product of the conditional marginal density
functions. However, we propose to smooth the arguments prior to
measuring the distance and use kernel density estimation to derive
the estimator. We show that under suitable conditions the proposed
smoothing does not affect the conditional independence but using
proper smoothing function helps in choosing the bandwidth param-
eter robustly. We discuss the computational issues and propose an
approximation to evaluate the estimator efficiently. We apply the
proposed measure in different experiments to show its validity.

Index Terms—Causality, conditional independence, dimension
reduction, Gaussian integral, multivariate density estimation.

1. INTRODUCTION

Let X = [X1, X2, . . . , XdX
]�, Y = [Y1, Y2, . . . , YdY

]� and Z =
[Z1, Z2, . . . , ZdZ

]� be three random vectors of dimensions dX , dY

and dZ respectively. Then X and Y are said to be conditionally
independent given Z if knowing Y does not provide any additional
information about X when Z = z is known. Mathematically this
concept is expressed as

fX|Y Z(x|y, z) = fX|Z(x|z) or, equivalently

fXY |Z(x, y|z) = fX|Z(x|z)fY |Z(y|z), ∀ [x; y; z] ∈ R
d (1)

where d = dX + dY + dZ , fU,V (u, v) denotes the joint probability
density of U and V , fU|V (u|v) denotes the conditional probability
density of U given a particular value of V = v and [· ; ·] denotes
the operation of concatenating two column vectors. The conditional
independence is symbolically expressed asX⊥Y |Z.

It can be easily seen that ifX⊥Y |Z then

fXY Z(xyz)fZ(z) = fXZ(xz)fY Z(yz), ∀ [x; y; z] ∈ R
d. (2)

When fZ(z) �= 0 (2) can be derived from (1) by replacing the con-
ditional density functions fU|Z(u|z) by the ratio of the joint and
the marginal densities as fUZ(uz)/fZ(z). When fZ(z) = 0 the
equation is trivial as all the joint densities involving Z evaluated at
Z = z are also zero. Note that this expression does not involve any
conditional densities but only joint and marginal densities.

A measure of conditional independence can be derived by mea-
suring the distance between the left and right hand side of (1) or (2).
However, note that the notion of distance may vary and we can find
different measure of independence, for example see [1]. In this pa-
per, we use (2) and measure the L2 distance to derive a measure of
conditional independence. The advantage of using (2) over (1) is that
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it does not require estimating any conditional densities to derive an
estimator. However, we do not directly measure the L2-distance but
propose to smooth the arguments prior to measuring the distance and
then use Parzen density estimate to estimate the distance. We show
that under suitable conditions the smoothing does not affect the con-
ditional independence but this simple approach allows us, first, to
choose the bandwidth parameters in estimating the measure more
robustly and, second, to approximate the final expression of the esti-
mator to reduce computational complexity.

To improve the readability of the paper, we use the following
notations throughout the paper. For simplicity we refer to random
vectors by a normal capital letter e.g. U and their realizations by
normal small letter e.g. u rather than bold letters e.g. u which are
usual vector notation. We denote the i-th element of U i.e. the i-
th random variable by Ui, the k-th realization of the random vector
U by uk which is a column vector and the k-th realization of the
random variable Ui by uik i.e. we view the n realizations of U as
a matrix of dimension (dU × n) where dU is the dimension of the
random vector U . Note that ui might also denote the i-th element
of the vector u, a single realization of U . The proper meaning of ui

will depend on the context. As we are working with three random
vectors in the paper, we device the following notation rule to denote
the joint random vectors formed by them,

W̄ = [X; Y ; Z], Ū = [X; Z], V̄ = [Y ; Z]

Unless otherwise stated we denote by d(·) the dimension of a (ran-
dom) vector. We denote a matrix by bold capital letter e.g. U and
vectors, except realizations of random vectors, by normal bold let-
ters e.g. u. By diag {σ1, . . . , σm}, we denote a diagonal matrix
whose (i, i)-th element is σi and, finally, by K

ΣU

UU , we denote the
(n × n) Gram matrix formed by U whose (k, l)-th element is given
by,

K
ΣU
UU (k, l) =

dUY
i=1

exp

 
− (uik − uil)

2

2σ2
Ui

!

whereΣU = diag
n

σU1
, . . . , σUdU

o
.

In the following section, we first describe the proposed measure
and then derive an estimator. We then discuss the issue of approx-
imating this estimator to reduce computational complexity. In the
next section, we describe two experiments to demonstrate the valid-
ity of the proposed measure. In the final section we conclude the
paper by summarizing the proposed work and briefly describing the
future work.

2. MEASURE OF CONDITIONAL INDEPENDENCE

2.1. Description of the measure

If the joint densities are known or if they can be estimated with suf-
ficient accuracy, for example by using kernel density estimate, then
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we can design a test of conditional independence based on testing
whether (2) holds. For example, we can define the following mea-
sure,Z

|fXY Z(x, y, z)fZ(z) − fXZ(xz)fY Z(yz)|2 dx dy dz.

It is easy to verify that this measure takes zero value under the null
hypothesis X⊥Y |Z. However, working with the density functions
directly poses a problem that we need to estimate appropriate band-
width parameters for all the random variables. Therefore, in this
paper, we consider a different approach; the purpose of which will
be apparent soon.

We use the fact that a function g : R
d → R is zero almost

everywhere on R
d if and only if

Z
Rd

dY
i=1

θi(wi − wi) g(w1, w2, . . . , wd) dw1 dw2 . . . dwd = 0

for almost all w = [w1, . . . ,wd]� ∈ R
d, provided the Fourier

transforms of θi : R → R do not vanish ∀ i ∈ {1, 2, . . . , d}. A sim-
ple proof with θi = θj ∀i, j can be found in [2] and a general proof
can be easily extended. In this paper, we choose θi’s from a scale
family i.e. we work with θi ≡ θhi

where hi is the corresponding
scale parameter. In particular, we work with

θh(w) =
1√
2πh

exp

„
w2

2h2

«
.

Using a Gaussian function serves a very particular and important
purpose that will be addressed in the following subsections. For sake
of clarity, we refer θi as the smoothing function and hi as the corre-
sponding smoothing parameter.

Let g(w̄) = fXY Z(xyz)fZ(z) − fXZ(xz)fY Z(yz) and

Θw̄(w̄) =

dXY
i=1

θhXi
(xi − xi)

dYY
j=1

θhYj
(yj − yj)

dZY
k=1

θhZk
(zk − zk)

where w̄ = [x;y; z] ∈ R
dw̄ and dw̄ = d. Note that we use the same

rule to denote the concatenation of x, y and z. Define,

H(w̄) =

Z
Rdw̄

Θw̄(w̄)g(w̄) dw̄. (3)

Then we have a new condition of conditional independence that
X⊥Y |Z if and only if H(w̄) = 0∀ w̄ ∈ R

dw̄ . The purpose of
working with (3) and not (2) is that it allows certain robustness in
choosing the bandwidth parameters. We will see this when we de-
rive the estimator of H(w̄). At this point we propose the following
measure of conditional independence,

ρ =

Z
Rd

w̄

H2(w̄) dw̄.

We call ρ the quadratic measure. Thus, ρ = 0 ⇔ X⊥Y |Z.

2.2. Estimation of the measure

In order to estimate ρ, we replace the density functions by their
Parzen estimates i.e. in particular we put

f̂W̄ (w̄) =
1

n

dXY
i=1

κσXi
(xi−xis)

dYY
j=1

κσYj
(yj−yjs)

dZY
k=1

κσZk
(zk−zks)

where κσ(u) denotes the Parzen kernel with bandwidth σ and n is
the number of samples [3]. The marginal densities can be easily
obtained by removing appropriate terms from the joint density. In
this paper we choose the kernel to be Gaussian.

As we have mentioned before, choosing both the smoothing
function θh, in the previous subsection, and κσ , here, to be Gaus-
sian is very important. It allows us to evaluate the integrals inH(w̄)
and ρ in closed form and in terms of Gaussian functions themselves.
That in turn allows us to rewrite the expression in terms of Gram ma-
trices of the random vectors and to use the properties of Gram ma-
trices to simplify calculations. Such property of Gaussian function
has been extensively used by the Information Theoretic Learning re-
search community [4].

Replacing g by its Parzen density estimate and using the prop-
erties of Gaussian functions, we can evaluate Ĥ(w̄) and ρ̂ in closed
form. A tedious but straightforward calculation gives ρ̂ =

1

D

nX
s,t,v,w=1

h
K

ΣX
XX(s, v)

“
K

ΣY
Y Y (s, v) + K

ΣY
Y Y (t, w)− 2K

ΣY
Y Y (s, w)

”

K
Σ

Z̈
ZZ (s, v)K

Σ
Z̈

ZZ (s, w)K
Σ

Z̈
ZZ (t, v)K

Σ
Z̈

ZZ (t, w)K
Σ

Ż
ZZ (s, t)K

Σ
Ż

ZZ (v, w)
i

where

ΣX = diag
n

ξXi
=
√

2
q

σ2
Xi

+ h2
Xi

: i ∈ {1, . . . , dX}
o

,

ΣY = diag
n

ξYj
=
√

2
q

σ2
Yj

+ h2
Yj

: j ∈ {1, . . . , dY }
o

,

ΣZ̈ = diag
n

ςZk
= 2

q
σ2

Zk
+ 2h2

Zk
: k ∈ {1, . . . , dZ}

o

ΣŻ = diag

8<
:2 σZk

vuutσ2
Zk

+ 2h2
Zk

σ2
Zk

+ 4h2
Zk

: k ∈ {1, . . . , dZ}
9=
; and

D = n2π
dX+dY +3dZ

2 2
2dX+2dY +3dZ

2

dXY
i=1

ξXi

dYY
j=1

ξYj

dZY
k=1

“
ςZk

σ2
Zk

”
.

Note that in the final bandwidth matricesΣX andΣY , the indi-
vidual kernel bandwidths (i.e. σXi

or σYj
) are not important. How-

ever, it is the combinations of the kernel bandwidths and the smooth-
ing parameters that play the key role. Since, we can vary the smooth-
ing parameter (i.e. hXi

and hYj
) for the corresponding kernel band-

widths (i.e. σXi
and σYj

respectively), we can choose a single
value (say σ) for all the diagonal elements ofΣX andΣY provided
σ > σXi

, σYj
∀i, j.

However, we do not enjoy the same privilege for ΣŻ and ΣZ̈

since in this case we need to choose two different bandwidth pa-
rameters (i.e. one for ΣŻ and the other for ΣZ̈ ) for each random
variable Zk but we only have one smoothing parameter (i.e. hZk

)
that can be varied. Therefore, for the conditioning variable we need
to pay attention to the selection of a proper kernel bandwidth (i.e.
σZk

). However, we will later see that the smoothing parameter for
the conditioning variable plays a crucial role in approximating the
estimator to reduce computational complexity.

2.3. Approximation of the estimator

The estimator ρ̂ described in the previous subsection contains four
summations. Therefore, to evaluate this expression directly requires
O(n4) computation which is prohibitive in any practical application.
To resolve this issue we make use of the smoothing parameter of the
conditioning variables. Note that if the diagonal entries ςZk

of ΣZ̈

is sufficiently large then the elements of the matrix K
Σ

Z̈

ZZ approach
1. Assume that var Zk = 1 and ςZk

> ς ∀k ∈ {1, . . . , dZ}. Now,
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let Zi and Zj be two iid realizations of Z, then

1− E

2
4exp

8<
:−

dZX
k=1

(Zki − Zkj)
2

2ς2Zk

9=
;
3
5 < E

2
4 dZX

k=1

(Zki − Zkj)
2

2ς2Zk

3
5 <

dZ

ς2
.

Therefore if, say, ς = 10
√

dZ then the average value of the elements
ofKΣ

Z̈

ZZ is at least greater than 0.99.
Exploiting this fact we approximate the term K

Σ
Z̈

ZZ (t, v) in the
final expression of ρ̂ by 1. The resulting expression can then be
expressed in the following way,

ρ̂ ≈ 1

D

h
1�
h
(K

ΣW̄

W̄W̄
K

Σ
Ż

ZZ ) ◦K
Σ

Z̈
ZZ ◦ (K

Σ
Ż

ZZ K
Σ

Z̈
ZZ )

i
1

+ 1�
h
(K

ΣŪ

ŪŪ
K

Σ
Ż

ZZ ) ◦K
Σ

Z̈
ZZ ◦ (K

Σ
Ż

ZZ K
ΣV̄

V̄ V̄
)
i
1

−21�
h
(K

ΣŪ

ŪŪ
K

Σ
Ż

ZZ ) ◦K
ΣV̄

V̄ V̄
◦ (K

Σ
Ż

ZZ K
Σ

Z̈
ZZ )

i
1
i

where ◦ denotes the entrywise matrix multiplication operation and 1

is a (n × 1)-dimensional vector of 1’s.
A direct evaluation of the approximated ρ̂ requires O(n3) op-

erations. However, to evaluate ρ̂ more efficiently we use the incom-
plete Cholesky decomposition where a (n×n)-dimensional positive
definite matrixK is represented by a (n× d)-dimensional lower tri-
angular matrix G̃ asK ≈ G̃�G̃where d ≤ n [5]. The computation
complexity of this method is O(nd2). Notice that the expression of
ρ̂ consists of three terms of the form 1�[(K1K2)◦K3 ◦ (K4K5)]1
where allK’s are (n × n)-dimensional matrices. First, we compute
the incomplete Cholesky decompositions (G̃i) of the corresponding
Gram matrices (Ki) where G̃i is a (n × di)-dimensional matrix.
Then we compute G̃12 = G̃�

1 G̃2G̃
�
2 and G̃45 = G̃�

4 G̃5G̃
�
5 such

thatK1K2 = G̃1G̃
�
12 andK4K4 = G̃4G̃

�
45. These computations

requireO(2nd1d2) andO(2nd4d5) operations respectively. Finally,
we rewrite

1�
h
(G̃1G̃

�
12) ◦ (G̃3G̃

�
3 ) ◦ (G̃4G̃

�
45)
i
1 =

d1X
k=1

d3X
l=1

d4X
m=10

@ nX
i=1

G̃1(i, k)G̃3(i, l)G̃4(i, m)

nX
j=1

G̃12(k, j)G̃3(l, j)G̃45(m, j)

1
A .

Computing this term requires O(4nd1d3d4) operations. Therefore
as long as we have d1, d2, d3, d4, d5 
 n, the complexity of evalu-
ating the approximation of ρ̂ is almost linear in n.

2.4. Selection of bandwidth parameters

Selecting appropriate bandwidths for multidimensional density esti-
mation is a nontrivial problem. However, assuming that the sample
variance of the observed data is 1, it can be shown that the band-
width parameter that minimizes the mean square error between the
actual and the estimated probability density function depends on the
number of samples in the following way [6], σ ∝ n−1/(d+4) where
d is the dimension of the multivariate density function. Following
this guideline we choose

σXi
= σYj

= σZi
= cn−1/(d+4)

∀i ∈ {1, . . . , dX}, j ∈ {1, . . . , dY }, k ∈ {1, . . . , dZ} where c is a
constant. Finally, following the argument in the previous section we
select

hXi
= hYj

= hZi
= 5

√
dZ

∀i ∈ {1, . . . , dX}, j ∈ {1, . . . , dY }, k ∈ {1, . . . , dZ}. Note that
when hZk

� σZk
then ςZk

≈ 2
√

2hZk
. Therefore the choice of

the smoothing parameter is justified.
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Fig. 1. The figure shows the variation of the quadratic measure ρ̂
with the coupling strength γ.

3. SIMULATIONS

In the experiments described below, we always normalize our vari-
ables to have zero mean and unity variance and use the bandwidth
parameters as described in the previous section. We choose c = 0.5
for both the experiments.

3.1. Causality

Given two time series {Ut} and {Vt}, {Ut} is said to cause {Vt} if
the present value of {Vt} depends on the past value(s) of {Ut} i.e.
Vt = h(V −

t , U−
t ) where Vt denotes the current value, V −

t (or U−
t )

denotes the collection of past values and h is a function; linear or
nonlinear. We denote causality by {Ut} → {Vt}. Using the concept
of conditional independence it is trivial to see that {Ut} → {Vt} ⇔
Vt�⊥U−

t |V −
t .

Let us consider the following time series,
X1(t + 1) = 1.4−X1(t)2 + 0.3X2(t), X2(t + 1) = X1(t)

Y1(t + 1) = 1.4− {γX1(t)Y1(t) + (1− γ)Y2(t)2}+ 0.1Y2(t)

Y2(t + 1) = Y1(t), X3, X4, Y3, Y4 ∼ N (0, 0.52)

where 0 ≤ γ ≤ 0.6 is the coupling strength. It is obvious that
{Xt} → {Yt} as the current value of {Yt} depends on the past value
of {Xt} but {Yt} �→ {Xt} as {Xt} evolves by itself. Therefore,
Xt ⊥ Yt−1 |Xt−1 but Yt �⊥Xt−1 |Yt−1. Also, note that the causal
dependence between {Xt} and {Yt} increases with the increase in
the coupling strength.

We consider this problem to compare our measure with that of
[7]. This problem is slightly challenging for the proposed measure
as, here, we have dX = dY = dZ = 4, i.e. the dimensionality
of the problem is 12 and the higher dimensionality of the problem
might cause trouble in estimation of multivariate density function.
Therefore, to deal with this issue, we work with 500 samples com-
pared to 100 in [7]. Fig. 1 shows the results of the experiment. We
clearly see that the figure supports the facts that {Xt} → {Yt} but
{Xt} �→ {Yt} and also that the causal dependence increases with
the increase in the coupling strength.

In order to compare our result to that of [7] we perform a permu-
tation test to decide an empirical threshold of rejection and compute
the rejection rate based on that. In Table 1 and 2 we record the re-
sult of the hypothesis test. The size of the test is 0.05. The results
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Table 1. Performance of INOCCO , HSIC and Quadratic measure
in rejecting the null hypothesis {Xt} is not causing {Yt}.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6

INOCCO 97 96 93 85 81 68 75
HSIC 94 94 92 81 60 73 66

ρ 98 92 89 87 71 79 76

Table 2. Performance of INOCCO , HSIC and Quadratic measure
in rejecting the null hypothesis {Yt} is not causing {Xt}.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6

INOCCO 96 0 0 0 0 0 0
HSIC 93 95 85 56 1 1 1

ρ 99 74 12 0 0 0 0

of Normalized Cross-Covariance Operator (INOCCO) and Hilbert-
Schmidt Independence Criterion (HSIC) have been excerpted from
[7]. We see that, although, our measure fails to reach the perfor-
mance level of INOCCO , it performs better thanHSIC in terms of
rejecting the null hypothesis, {Yt} is not causing {Xt}.

3.2. Dimensionality reduction

In a regression setting, let U be a set of m features and Y be the
target. Then a l-dimensional effective subspace of the original m-
dimensional feature space (l < m) consists of l linear combinations
of the m original features that carry most of the information (if not
all) about the target. Mathematically, we aim at finding an orthonor-
mal transformation Π = [ΠS ,Π⊥

S ] such that Y ⊥Π⊥�
S X |Π�

S X
whereΠS is a (m× l)-dimensional matrix that defines the effective
subspace andΠ⊥

S denotes the corresponding null space. We use the
quadratic measure as the cost function which attains its minimum at
Y⊥Π⊥�

S X |Π�
S X .

Let us consider the following example, Y = 2e−X2
1/2+ξ where

X = [X1, X2] is distributed as 0.5N (m,Σ2) +0.5N (−m,Σ2)

with m = [0.5, 0.5] and Σ =
ˆ
[1;−√

2], [−√
2; 1]

˜
and ξ ∼

N (0, 0.12) is additive white measurement noise. It can be easily
seen that in this particular setting onlyX1 is important and therefore
the effective subspace is given byΠS = [1, 0]�.

We choose this example because the nonlinearity of the problem
makes it harder to find the effective subspace [8]. The problem in-
volves only 3 random variables. Therefore, we work with 100 sam-
ples. Also note that we need to find only a single Givens rotation
that generate the orthonormal matrix Π. Fig 2 shows the variation
of the cost function along the Givens rotation. We clearly see that
there is a global minimum near the neighborhood of 0. Exploiting
this fact, we use a simple Golden search technique in the neighbor-
hood of 0 to find the minimum. Table 3 records the performance
of our method along with other methods such as Canonical correla-
tion Analysis (CCA) and Kernel Dimensionality Reduction (KDR).
The results of the other methods have been excerpted from [8]. We
see that the proposed measure has been able to extract the effective
subspace successfully.

4. SUMMARY

In this paper we propose a new measure of conditional independence
that is based on measuring the difference between the conditional
joint density and the product of conditional marginal densities. We
use kernel density estimation to derive the estimator of the proposed

−3 −2 −1 0 1 2 3
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0.5
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1.5
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x 105

θ (rad)

D
ρ

Fig. 2. The figure shows the variation of the ρ̂ as a cost function
along the Givens rotation θ.

Table 3. Performance of SIR, pHd, CCA, PLS, KDR and the
quadratic measure in finding the effective subspace for regression.

SIR pHd CCA PLS KDR ρ

abs. err. (rad) 1.51 0.99 0.18 0.45 0.005 0.047

measure. However, we propose to work with smoothed density func-
tions to allow robust selection of the bandwidth parameters. We
also propose an approximation for the estimator that can be eval-
uated efficiently. We apply the measure on two synthetic problems
to demonstrate its potential and validity.

The estimator of the proposed measure relies on the kernel den-
sity estimate and kernel density estimation often becomes unreliable
in multidimension due to unavailability of sufficient samples. Al-
though, we have seen in our experiments that the proposed measure
works effectively with finite number of samples, a theoretical study
is nonetheless necessary. Also, we work with an approximation of
the estimator rather than the actual estimator itself. Although this
approximation gives us reasonable result in our experiments, further
study of the approximation is still important.
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