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ABSTRACT

One of the most basic problems in science and engineering is the
assessment of a considered model. The model should describe a set
of observed data and the objective is to find ways of deciding if the
model should be rejected. It seems that this is an ill-conditioned
problem because we have to test the model against all the possible
alternative models. In this paper we use the Kolmogorov–Smirnov
statistic to develop a test that shows if the model should be kept or it
should be rejected. We explain how this testing can be implemented
in the context of particle filtering. We demonstrate the performance
of the proposed method by computer simulations.

Index Terms— Model assessment, particle filtering,
Kolmogorov-Smirnov statistics

1. INTRODUCTION

The power of science has been recognized by the ability of the scien-
tific method to predict the future accurately and in a consistent way.
Often the accuracy is quantified by the discrepancy between future
observations (once observed) and sets of predicted observations. In
a general setting, a model M is used to predict future observations
and one way of producing them is by employing the predictive distri-
bution of the data conditioned on the model. We write the predictive
distribution of the set of observations y1:T ≡ {y1, y2 · · · , yT } con-
ditioned on M as p(y1:T |M), where

p(y1:T |M) = p(y1 |M)

T∏
t=1

p(yt+1 | y1:t,M) (1)

with the factors in (1), p(yt+1 | y1:t,M), being predictive distribu-
tions themselves. At time instant t, yt+1 is a future observation mod-
eled by M, and y1:t ≡ {y1, y2, ..., yt} is the set of known observa-
tions.

The observations are our physical reality and are often the
only ingredient that we have when we deal with the uncertainty
of considered model(s). When we have more than one competing
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model for the observed data, we usually want to find the best of
these models. This is known in the literature as the model selection
problem [1]. From a Bayesian perspective, the best model is
typically the model that has the maximum a posteriori probability,
p(Mk | y1:T ), where Mk signifies the k−th considered model
and where y1:T is the set of data used in computing the posterior
probability of Mk. One can show that by using this criterion, one
balances the goodness of fit and the complexity of the model. The
implementation of the model selection is a well studied problem,
and the literature on the subject is quite large. We point out that in
this paper we are interested in the class of dynamic models which
are nonlinear and which may contain non-Gaussian noises. Then
the model selection may not be a trivial task. However, since for
nonlinear dynamic models particle filtering is often the method of
choice, it is useful to have approaches for model selection within the
context of particle filtering. It can be shown that model selection in
that case can be accomplished by following a well established theory
(for example, see [2]).

In this paper, by contrast, we deal with a scenario where we
have only one model, and we want to make a decision whether to
keep the model or reject it. Clearly, any meaningful analysis of
data requires the possibility of excluding the used model if it fails
to provide satisfactory description of the data [3]. The problem of
evaluating a single model is not an easy one because it seems that
it is ill posed in the sense that we have to test a model M against
unstated alternatives. If there is a true model denoted by M0, we
have to test the hypothesis

H : M = M0. (2)

In [1] this formulation of the problem is considered “rather too
general to develop further in any detail.” The difficulty of this “ill
defined problem of model rejection” is alleviated by specifying a
large set of alternative models parameterized by some conveniently
chosen set of parameters where the model M0 is some form of
parametric restriction of a more general class of models denoted by
M1. The problem then becomes one of model selection.

Here we propose a method that is truly a method for model
assessment that does not require defining alternative models. We
anchor the procedure around the made observations and the model-
based predicted observations. As in model selection the key role in
the assessment is played by the predictive distribution of the data
conditioned on the assessed model. Under certain mild assumptions,
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we invoke the Kolmogorov-Smirnov statistics and use them to
develop a test that can readily be used for assessing the considered
model of the data. As pointed out, we are interested in dynamic
nonlinear models and so we use particle filtering to generate the
posterior distributions of the unknowns of the model. It turns out
that the main object of interest, the predictive distribution of the
model can readily be approximated by particle filtering and used
for generation of future observations. The generated samples are
then compared to the made observations by using the two-sample
Kolmogorov-Smirnov statistics, which are finally compared to a
threshold for making a decision.

The paper is organized as follows. First, in Section 2 we
formulate the problem in mathematical terms. Then in Section 3,
we present the proposed method, where we show how we generate
samples from the predictive distribution and how we develop the test.
In Section 4, we demonstrate the method with computer simulations.
We conclude the paper with Section 5 by making some final remarks.

2. PROBLEM FORMULATION

Consider a state space model M defined by

xt = f(xt−1, ut) (3)

yt = g(xt, vt) (4)

where t is a discrete time index with t ∈ N, xt ∈ R
nx is the

unknown state of the system, yt ∈ R is an observation , ut ∈ R
nu

and vt ∈ R
nv are state and observation noises, respectively, and

f(·) and g(·) are known functions. The model M, in general, is
basically a set of assumptions that include

1. the definition of the state equation (3), i.e., its mathematical
form,

2. the initial distribution of the state, p(x0),

3. the assumption about the distribution of the state noise (this
is usually a parametric distribution with known or unknown
parameters ψ – if the parameters are unknown, then a prior
p(ψ) of ψ is typically adopted),

4. the definition of the observation equation (4), i.e., its mathe-
matical form,

5. the assumption about the distribution of the observation noise
(this, too, is often a parametric distribution with known or
unknown parameters ξ - again, when they are unknown, one
assumes a prior p(ξ)), and

6. independence of the noises in the state and observation
equations.

More succinctly, we say that the model is defined by f(·), g(·),
p(x0), p(ut|ψ), p(ψ), p(vt|ξ), and p(ξ).

The main question we address in this paper is the assessment of
the model. How good is it? How do we test if the model is good
without the need for an alternative model [1]?

3. PROPOSED METHOD

In search for an answer to the model assessment problem, we use
the predictive distribution of the data, p(yt+1|y1:t,M), because it
encapsulates the power of the model. The main idea in assessing the

model M is in comparing the distribution of the samples y
(k)
t+1 that

are generated from p(yt+1|y1:t,M) with the actually observed sam-
ples yt+1. Before we get to explaining how we do this comparison,

we show how to generate the samples y
(k)
t+1 from p(yt+1|y1:t,M).

Our intention is to apply the test to very challenging models, includ-
ing dynamic nonlinear models. Therefore, it seems reasonable that
we adopt a methodology that can successfully deal with such mod-
els. We chose to work with particle filtering, so we explain first how
to approximate the predictive distributions with particle filtering and
then how to generate samples from them.

3.1. Particle filtering

With particle filtering we process the data y1:T sequentially with the
objective of obtaining the posterior distributions of the unknowns
in the system (3)–(4) [4, 5]. Particle filtering is based on streams
of particles which are recursively generated and which are appro-
priately weighted. Without loss of generality, let the unknowns of
the model at time instant t be given by the discrete random measure

χt = {(x(m)
t , ψ(m), ξ(m)), w

(m)
t }M

m=1, where M is the total num-

ber of particles, and (x
(m)
t , ψ(m), ξ(m)) are the unknowns of the

system at time instant t.

Our main interest is the generation of samples y
(k)
t+1 from the

predictive distribution p(yt+1 | y1:t,M). In general, we can write,

p(yt+1 | y1:t,M) =

∫
p(yt+1 |x0:t+1, ψ, ξ, y1:t,M)

× p(x0:t+1, ψ, ξ | y1:t,M)dx0:t+1dψdξ.

(5)

Clearly, in a general scenario, it will be very difficult to generate
samples from p(yt+1 | y1:t,M). However, when we apply particle
filtering, this may be carried out readily.

To simplify the notation and the exposition, we assume that the
parameters ψ and ξ are known. Then (5) simplifies to

p(yt+1 | y1:t,M) =

∫
p(yt+1 |xt+1,M)

× p(xt+1 |xt,M)p(x0:t | , y1:t,M)dx0:t+1.

(6)

It is clear that the last expression can also be written as

p(yt+1 | y1:t,M) =

∫
p(yt+1 |xt+1,M)

× p(xt+1 |y1:t,M)dxt+1.

(7)

Now, if we approximate the distribution p(xt+1 | y1:t,M) by

p(xt+1 | y1:t,M) �
M∑

m=1

w
(m)
t p(xt+1|x(m)

t ,M) (8)

we see that we can approximately generate y
(k)
t+1 from

p(yt+1|y1:t,M) by first sampling x
(j)
t+1, j = 1, 2, · · · , J from

x
(j)
t+1 ∼

M∑
m=1

w
(m)
t p(xt+1 |x(m)

t ,M) (9)

and then drawing y
(k)
t+1, k = 1, 2, · · · , K according to

y
(k)
t+1 ∼ 1

J

J∑
j=1

p(yt+1 |x(j)
t+1,M). (10)

So, the generation of yt+1 is a two-step procedure. First, samples of

x
(j)
t+1 are drawn by using (9) and then samples of y

(k)
t+1 are generated

according to (10).
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3.2. Kolmogorov-Smirnov test

From the previous subsection we see how we can obtain samples
from the predictive distribution p(yt+1 | y1:t,M). We want now to
compare these samples with the actual observation yt+1. To that end
we propose to use the two-sample Kolmogorov-Smirnov test [6, 7].

The Kolmogorov-Smirnov test belongs to the category of non-
parametric tests. If we have two sets of samples X1, X2, · · · , XL

and Y1, Y2, · · · , YK , which respectively are independent and identi-
cally distributed according to the continuous distributions px(x) and
py(y), then we could test for the equality of the generating distribu-
tions. Namely, under the hypothesis H0 we have that F (x) = G(x)
where F (·) and G(·) are the cumulative distribution functions of the
random variables X and Y . From the available samples, we can

construct the empirical distributions F̂ (·) and Ĝ(·) and test for their
agreement.

We define

DL,K = sup
x

|F̂L(x) − ĜK(x)| (11)

and in the sequel we refer to it as the Kolmogorov-Smirnov (KS)
statistic. Then, the test based on this statistic rejects the hypothesis
H0 at level α if

DL,K ≥ γ(α, L, K) (12)

where γ(·) is a threshold and

P (DL,K ≥ γ(α, L, K)) = α(L, K). (13)

There are tables from which one can obtain the relevant thresholds
(for small L and K they can be found in [8] and for large L and K
one can obtain them by using limiting results from [9]).

In our problem we have an extreme situation where there is only
one sample from the actual predictive distribution (L = 1) and
as many samples as one may wish to generate from the predictive
distribution of our model. First, we make the following claim:

Claim 1: The KS statistic D1,K satisfies

0.5 ≤ D1,K ≤ 1. (14)

�

We proceed with another claim. Without loss of generality let
K be an odd positive number. Then

Claim 2: If K is an odd positive number, and if yt+1 comes from the

same distribution as that of the samples y
(k)
t+1, then

P
(
D1,K =

n

K

)
=

2

K + 1
(15)

where n = (K + 1)/2, (K + 3)/2, · · · , K.
�

Hence, we have that the KS under H0 is a uniformly distributed
random variable on the support {(K +1)/2K, · · · , (K−1)/K, 1}.
We need two more results. They are given by the next claim.

Claim 3: The expected value and the variance of D1,K are given by

E (D1,K) =
3K + 1

4K
(16)

E
(
(D1,K − E (D1,K))2

)
=

K3 + 3K2 − K − 3

48K2(K + 1)
. (17)

�

These claims are easy to prove. It is obvious that

lim
K→∞

E (D1,K) = 0.75 (18)

lim
K→∞

E
(
(D1,K − E (D1,K))2

)
=

1

48
. (19)

It is important to note that these results hold for any continuous
distributions. It is also important to note that the mean and the
variance in (18) and (19) are those of a uniform random variable
defined on [0.5, 1].

Now, as we keep processing the data and obtaining the KS
statistics, we can compute the average value of the latter, that is,

D1,K,t =
1

t

t∑
j=1

D1,K,j (20)

where we added one more subscript to the KS statistics to distinguish
them as they are obtained at different time instants. If the model M
is the correct model, and if the particle filtering correctly approx-
imates the predictive distributions p(yt+1 | y1:t,M), then the KS
statistics are all identically distributed. They are also independent,
and so by central limit theorem, D1,K,t is approximately normally
distributed with mean 0.75 and variance 1/(48t). This result can
then be used to develop one of the many existing tests for deciding
whether to reject the model M.

3.3. Summary of the method

In summary, the proposed method is applied as follows: for each
time instant t.

1. generate samples of y
(k)
t+1 from the predictive distribution

p(yt+1|y1:t,M), which is approximated by a discrete ran-
dom measure constructed by the particle filter,

2. compute the KS statistic D1,K,t+1, and

3. update the mean D1,K,t to D1,K,t+1.

At the end, use the obtained statistic D1,K,T do decide whether to
reject M.

4. COMPUTER SIMULATIONS

In order to illustrate the validity of the proposed model assessment
approach, we investigated the sensitivity of the KS statistics to
parameter mismatches in the nonlinear and non-Gaussian system
described by

xt = βxt−1 +
25xt−1

1 + x2
t−1

+ 8 cos(φt) + σut (21)

yt =
1

20
x2

t + vt (22)

where ut ∼ N (0, 1) and vt ∼ N (0, 1) were statistically indepen-
dent Gaussian noise terms, the prior distribution of the state signal
was Gaussian, namely x0 ∼ N (cos(0), 1), and θ = [β, φ, σ]�

was the vector of parameters of interest, including the signal gain
β, the frequency φ and the standard deviation σ for the state equa-
tion. We generated observations by running the system (21)-(22)
with the parameter vector θ0 = [0.5, 1.2, 1.0]�, which defined the
“true model” for our experiments and was denoted by M0. Then we
used these observations in the standard particle filtering algorithm
(sequential importance resampling – SIR) [4]. The algorithm was
designed under each one of the following assumptions:

2975



0.5 0.6 0.7 0.8 0.9 1
0

100

200

300
(a)

0.5 0.6 0.7 0.8 0.9 1
0

100

200

300
(b)

0.5 0.6 0.7 0.8 0.9 1
0

100

200

300
(c)

0.5 0.6 0.7 0.8 0.9 1
0

100

200

300
(d)

Fig. 1. Histograms of the averaged KS statistic, D1,500,300. Plot
(a): the SIR algorithm is perfectly matched to the true model. Plot
(b): mismatch of +0.01 in the frequency parameter, φ. Plot (c):
mismatch of −0.1 in the signal gain, β. Plot (d): mismatch of +0.5
in the signal noise standard deviation, σ.

1. The parameter vector was θ1 = θ0, i.e., the SIR procedure
was perfectly matched to the true model.

2. The parameter vector was θ2 = [0.5, 1.21, 1.0]�, i.e., there
was a mismatch of 0.01 in the frequency parameter, φ.

3. The parameter vector was θ3 = [0.4, 1.2, 1.0]�, i.e., the
signal gain, β, was decreased by 0.1.

4. The parameter vector was θ4 = [0.5, 1.2, 1.5]�, i.e., the
standard deviation of the noise in the state equation was
increased by 0.5.

In all the cases, the SIR algorithms were run with M = 500 particles
with a systematic resampling step at each time instant t.

We obviously had four different models, M1, . . . ,M4, defined
by the corresponding parameter vectors, θ1, . . . , θ4. To assess the
adequacy of the model Mi, we generated a sequence of 300 obser-
vations from model M0, ran the SIR algorithm to obtain the approx-
imations p(yt+1|y1:t,Mi), t = 1, . . . , 299, drew K = 500 samples
of yt+1 and, for each t, computed the KS statistics D1,500,t+1. The
expected value E[D1,500,t] was estimated by way of time averaging,
D1,500,300 = 1

300

∑300
t=1 D1,500,t. Moreover, since D1,500,300 is a

random variable in this setting, we independently repeated the above

procedure 1000 times in order to get independent draws D
(j)
1,M,300,

j = 1, ..., 1000.

Figure 1(a) shows the histogram of the averaged KS statistic
obtained for model M1 = M0. In this case, there was no
model mismatch and, as predicted by our analysis, the statistic

D
(j)
1,500,300, j = 1, ..., 1000, concentrated around the expected value

E[D1,500,300] = 0.75 for the true model. In particular, the empirical
mean was 0.751 while the empirical variance was 6.858 × 10−5.

Figure 1(b) depicts the effect on the KS statistic of assuming
model M1, which involved a slight frequency offset of +0.01. The

system (21)–(22) turns out to be very sensitive to changes in this
parameter and this is sharply shown by the distribution of D1,500,300.
Indeed, the histogram is clearly shifted to the right when compared
with Figure 1(a). The empirical mean and variance of D1,500,300,
assuming M2 was the correct model, were 0.857 and 5.783×10−5,
respectively. Based on the obtained statistics D1,500,300 in each of
the trials, the model would be always rejected.

The effect of the other parameters on the KS statistics was
less apparent. Figures 1(c) and 1(d) show the histograms obtained
for models M3 and M4, respectively, which corresponded to
mismatches in the signal gain, β, and the standard deviation of the
noise in the state equation, σ. The empirical mean and variance for
model M3 were 0.787 and 7.014 × 10−5, respectively, while the
corresponding values for M4 were 0.735 and 6.780 × 10−5. From
the histograms, we can conclude that the incorrect model M4 is the
least prone to rejection.

5. CONCLUSIONS

We proposed a methodology for deciding whether to reject a con-
sidered model for a set of observed data. The test is based on the
assumption that we can generate samples of future data by using the
predictive distribution of the data and conditioned on the assessed
model. In this paper, we approximated the predictive distribution of
the data via the concept of particle filtering. The empirical distribu-
tion of the generated data is compared with the empirical distribution
of the observed data by using the two-sided Kolmogorov-Smirnov
test. If the model is correct, the average value of this statistic over
time is approximately distributed as a Gaussian with known mean
and variance. The statistics of the mean value are finally used to
define a test for rejection of the model.

————————————————————————-
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