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ABSTRACT

We first derive the stochastic dynamics of a Gaussian-

compound model with an inverse Gamma distributed texture

from Jakeman’s random walk model with step number fluc-

tuations. Following a similar approach existing for the K–

distribution, we show how the scattering cross-section may

be inferred from the fluctuations of the scattered field inten-

sity. By discussing the sources of discrepancy arising during

this process, we derive an analytical expression for the infer-

ence error based on its asymptotic behaviours, together with

a condition to minimize it. Simulated data enables verifica-

tion of our proposed technique. The interest of this strategy is

discussed in the context of radar applications.

Index Terms— sea surface electromagnetic scattering,

radar clutter, radar cross sections, stochastic differential equa-

tions, radar signal processing

1. INTRODUCTION

Compound-Gaussian models [1, 2] have been widely used

to render the scattering amplitude retrieved from marine sur-

faces (especially with high-resolution radars). In effect, a ran-

dom walk model with step number fluctuations [3] for the to-

tal scattered field yields such probability distributions for the

scattered intensity where the (Gaussian) Rayleigh scattering

is modulated by the variations in the scatterers population: the

Radar Cross-Section (RCS). Besides the Gamma distribution,

which results in a K–distributed scattered intensity, various

other probability distributions may be chosen to model the

RCS (e.g., an inverse Gamma distribution [4]). It was shown

in [5], for an arbitrary cross-section, that one could extract

this RCS from the (smoothing over a sample window of the)

intensity-weighted fluctuations of the phase, a result relevant

for radar processing applications to detect anomalies. How-

ever, due to the highly volatile phase variations, this inference

process was heavily influenced by the smoothing process (i.e.,

over how many pulses the phase decoherence was averaged).

In the K–distributed case, the error arising in this procedure

was analytically studied and a condition, on the smoothing

window length, was derived to minimize it as described in

[6]. Whilst focusing on an inverse Gamma texture, which is

also of interest in radar applications, this paper aims to de-

rive a corresponding analytical expression for the error aris-

ing during this inference process and optimize the smoothing

(thus extending the strategy followed in [6]). The claims are

illustrated by simulation data that compares this analytically

tracked error with the discrepancy experimentally found.

2. RANDOM WALK MODEL

The scattered electric field is conveniently represented by a

random walk model with a fluctuating number of steps Nt [3]

�
(Nt)
t =

Nt∑
j=1

exp
(
iφ

(j)
t

)
(1)

where the (independent) phasors {φ(j)
t } are taken as a collec-

tion of Wiener processes φt = Δ(j) + B1/2W
(j)
t , with the

random initializations {Δ(j)} a set of independent random

variables uniformly distributed on the interval [0, 2π). The

rationale is understood as follows: within the illumination

range of a radar will be present a time-varying population of

scatterers, assumed to behave identically. The scattered am-

plitude results as the summation of the scatterers’ individual

contributions.

Using Ito’s formula for (1) enables to write the following

Stochastic Differential Equation (SDE) for the (normalized)

process γt = limN→∞[�(Nt)
t /N

1/2
t ] for a constant popula-

tion,

dγt = −1
2
Bγtdt + B1/2dξt (2)

in terms of the complex Wiener process ξt (which satisfies

|dξt|2 = dt and dξ2
t = 0). γt is therefore a complex Ornstein-

Uhlenbeck process, labeled speckle in radar processing appli-

cations. The inverse of the constant B, characterized by the

carrier wavelength according to B ∼ c|�k|, is a characteristic

time for the autocorrelation of γt.

If the number of scatterers fluctuates with time, we intro-

duce the scattering amplitude ψt, normalized by the popula-

tion mean N̄ , for which the following compound representa-
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tion holds:

ψt = lim
Nt→∞

[
�
(Nt)
t /N̄1/2

]
= lim

Nt→∞

[(
Nt/N̄

)1/2 (�(Nt)
t /N

1/2
t )

]
= x

1/2
t γt (3)

where xt = limNt→∞[Nt/N̄ ]1/2 is the scattering cross-

section (i.e., the texture). Equation (3) represents the scat-

tered amplitude as the product of two processes inherently

independent: the population evolution xt and the Rayleigh

amplitude scattered from a constant number of scatterers.

3. CHOICE OF THE TEXTURE

The discussion above pertains to any compound-Gaussian

model, which is characterized by selecting a probability dis-

tribution for the RCS xt. The primary criterion to support

such a choice is the closeness to experimental scattering

data. A widely accepted model, the K–distribution, posits a

Gamma distribution for the RCS [3]. We shall here consider

an alternative inverse Gamma distribution for the texture x

P∞ =
x−(α+1)exp−1/x

Γ(α)
(4)

which has also been justified on experimental grounds in [4].

In other words, the random variable u = 1/x is Gamma dis-

tributed. The first two moments of the distribution (4) read

〈x〉 = (α−1)−1 and Var[x] = (α−1)−2(α−2)−1 and exist

for α > 1 and α > 2 respectively.

This distribution can be seen as the asymptotic distribu-

tion of a probability density that obeys the following Fokker-

Planck equation on a suitable timescale:

1
A

∂P
∂t

= −∂[βP]
∂x

+
∂2[σ2P]

∂x2
(5)

where β and σ2 represent, respectively, the drift and volatil-

ity coefficients. The autocorrelation characteristic time of the

RCS A−1 is (experimentally) much greater than B−1 (of the

order of many seconds and milliseconds, respectively [6]). In

other words, the rapidly varying speckle is modulated by a

long timescale RCS. It may be verified that the probability

distribution (4), with parameters β = 1−(α−1)x and σ = x,

is indeed the asymptotic distribution for (5)1.

An alternative representation of the FPE (5), which facil-

itates subsequent derivations of the scattered amplitude dy-

namics, is the following SDE,

dxt = A(α− 1)(α− xt)dt +
(
2Ax2

t

)1/2
dW

(x)
t , (6)

in terms of the rescaled process: xt → α(α−1)xt. As the lo-

cal Rayleigh power, xt should remain positive. Consistently

1note that the asymptotic distribution does not determine uniquely the

drift and volatility parameters

we observe from (6) that there exists a natural boundary at

xt = 0 (provided α > 1, i.e., that the first moment of the

RCS exists) since the volatility vanishes and the drift is posi-

tive there. Echoing the similar property existing for a Gamma

distribution, (6) also guarantees an exponential decay in the

autocorrelation function (for α > 1/2) [7].

4. DYNAMICS OF THE SCATTERING AMPLITUDE

The dynamics of the intensity zt = |ψt|2 and phase θt =
� (ψt) can be obtained from (2) and (6) [5]. In effect, the

intensity dynamics obey the equation

dzt =
[
A

(
(α− 1)(α− xt)zt

xt

)
+ B(xt − zt)

]
dt

+(2Az2
t )

1
2 dW

(x)
t + (2Bxtzt)

1
2 dW

(r)
t (7)

where

(γ∗
t dξt + γtdξ∗t ) =

(
2zt

xt

) 1
2

dW
(r)
t . (8)

Similarly, the phase is governed by the SDE

dθt =
(Bxt

2zt

) 1
2

dW
(θ)
t (9)

where

1
i
(γ∗

t dξt − γtdξ∗t ) =
(

2zt

xt

) 1
2

dW
(θ)
t . (10)

We note that the two Wiener processes arising above, dW
(r)
t

and dW
(θ)
t , are independent (the radial and angular fluctua-

tions in the resultant amplitude are statistically independent).

Although the K–distributed disturbance is often dis-

cussed in the literature, this exposition in terms of a set of

SDEs is less common. Its main advantage is as follows.

Instead of considering the mere moments of the scattered in-

tensity, the coupled system (6) and (7) captures the dynamics

permitting, for instance, to derive analytically the autocorre-

lation function of zt or any higher-order temporal statistic.

Another significant advantage is the possibility of generating

K–distributed samples through a finite difference scheme.

5. CROSS-SECTION INFERENCE

At this point, we shall recall a proposition from [5] which

states that the instantaneous values of the scattering cross-

section are observable through the intensity-weighted squared

phase fluctuations, as shown by:

xt =
2
B ztdθ2

t /dt. (11)
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Fig. 1. Inference of the scattering cross-section/population

through the effect of phase decoherence. (For parameter val-

ues α = 4, A = 10−4, B = 10−3.)

The efficiency this proposition is verified for synthetically

generated data by adapting the simulation performed in the

case of K–scattering [5] for our inverse Gamma texture (i.e.,

the drifts and volatility parameters corresponding to the K–

scattering case, β = (α − x) and σ2 = x, are respectively

substituted by β = 1 − (1 − α)x and σ2 = x2). An Ito

finite difference scheme enables to generate samples of the

scattered amplitude, through (3), as the result of the (indepen-

dent) integrations of the complex Gaussian process (2) and of

the population dynamics (6).

The results of the simulation are provided in Figure 1
which shows time series for the scattered intensity (observed

state), the exact cross-section generated in the simulation (un-

known state) and the values of the state inferred from the

phase fluctuations. The estimate of the state follows from (11)

which implies, for discretely sampled data,

ziδθ
2
i ∝ xin

2
i (12)

where {ni} are an independent collection of N (0, 1) dis-

tributed random variables.

Applying a smoothing average 〈.〉Δ to the left-hand side

(the observations) of (12) with window Δ = [t0 −Δδt, t0 +
Δδt] yields an approximation to xt0 . An alternative expres-

sion for (12) makes use of the independence between nt and

xt (as evidenced by (3) and (10)).

〈xi〉Δ ∝ 〈zidθ2
i 〉Δ

〈n2
i 〉Δ

(13)

6. OPTIMIZATION OF THE INFERENCE

Equation (13) reveals the two distinct phenomena that will

yield a discrepancy between the exact state and its smoothed

value inferred from the intensity fluctuations. If the number of

samples contained within the smoothing window is too small,

the variance of 〈n2
i 〉Δ will be high. A contrario, if the win-

dow length is too large, the instantaneous fluctuations of the

RCS are not captured well enough since the average 〈zidθ2
i 〉Δ

produces a loss of information. Since these two effects van-

ish for, respectively, large and small Δ, we may assert that

the total error may be written as the summation of these two

asymptotic behaviours. The error for the first case, εni , when

Δ is small reads as follows since 〈xi〉Δ ≈ xi

εni =
N∑

i=1

E
[(〈n2

i 〉Δ xi − xi

)2
]

(14)

=
N∑

i=1

E
[
x2

i

]
E

[
(〈n2

i 〉Δ − 1)2
]

(15)

=
2
Δ

(
N∑

i=1

E
[
x2

i

])
. (16)

where we have used n2
i ∼ χ2(1) and Var[n2

i ] = 2. The situ-

ation of the error for a large window length, εxi , is somehow

more complex. Here, the deviation may be written

εxi =
N∑

i=1

E
[
(〈xi〉Δ − xi)

2
]

(17)

since 〈ni〉Δ ≈ 1. If we consider the discrete version of (6),

xi+1 = (1− (α− 1)Aδt) xi + α(α− 1)Aδt (18)

+
(
2Aδtx

2
i

)1/2
wi

where wi ∼ N (0, 1). SinceAδt � 1, 1−(α−1)Aδt ≈ 1 (the

fluctuations of the RCS being negligible within the sampling

window) ; yielding the iterated expression

xi+j = xi + jα(α− 1)Aδt (19)

+
|j|∑

k=1

(2Aδt)1/2xi+sg(j)kwi+sg(j)k

The inner term in (17) therefore reads

〈xi〉Δ − xi =
1
Δ

Δ
2∑

j=−Δ
2

[
jα(α− 1)Aδt (20)

+
|j|∑

k=1

(2Aδt)1/2xi+sg(j)kwi+sg(j)k

]

where jα(α − 1)Aδt vanishes, since it is odd. A subsequent

derivation, using E[wiwj ] = δi−j , yields
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Fig. 2. Comparison of the experimental and analytical MSE

deviations between the inferred and the exact cross-sections.

εxi =
AδtΔ

6

(
N∑

i=1

E
[
x2

i

])
. (21)

for the asymptotic error (cf. [6] for details). Armed with

analytical expressions for its asymptotes, (16) and (21), the

total smoothing error may be written

ε =
[AδtΔ

6
+

2
Δ

](
N∑

i=1

E
[
x2

i

])
, (22)

out of which we readily derive the following condition on the

smoothing window length for the inference to be optimized

Δopt =
(

12
Aδt

)1/2

(23)

For our inverse Gamma texture, the validity of (22) is es-

tablished by computing the MSE deviation between the in-

ferred and the exact cross-sections over a range of window

length Δ. Figure 2 (where the parameter values are the same

as for Figure 1) shows that the analytical error (solid line)

captures accurately the experimental error (markers).

7. CONCLUSION

Following a strategy exposed in [5] we have discussed how,

for an arbitrary diffusion model for the texture, exemplified

herein by an inverse Gamma distribution, it is possible to in-

fer the RCS from the fluctuations of the scattered intensity

and phase. Next, we have derived an analytical expression for

the error resulting from this inference process and we have

provided a condition, on the number of pulses over which the

phase decoherence must be averaged, to minimize it. Thus,

the procedure described in [5] has been improved. The pro-

cedure developed in this paper may readily be extended to

various other diffusion models for the texture and future work

should focus on the corresponding situations for existing rec-

ognized Gaussian-compound clutters. The Pearson class of

diffusion processes [8] is of particular interest since, on ac-

count of the corresponding linear drift in (6), it will proceed

along the same steps (except for the substitution of the ad
hoc volatility parameter in (21)). These results are firstly ex-

pected to improve the procedure detailed in [5] to observe the

RCS and secondly to extend it to other compound Gaussian-

distributions. In addition, they may also be relevant for other

fields where compound Gaussian-models are commonly used

(e.g., radio propagation channel disturbances).
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