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ABSTRACT

This paper presents a method for estimating the optimum memory
size for identification of an unknown second-order Volterra kernel.
As these structures may imply considerable computational demands,
it is highly desirable to design adaptive realizations with a mini-
mum number of coefficients. Therefore, we propose a combina-
tion scheme comprising two Volterra filters with time-variant sizes
of the actually used quadratic kernels. By following some simple
rules, the number of diagonals in the quadratic kernels is increased
or decreased in order to find the optimum memory configuration
in parallel to the coefficient adaptation. Thus, the arbitrary choice
of the nonlinear system size is overcome by a dynamically grow-
ing/shrinking system. Experimental results for various signals and
nonlinear scenarios demonstrate the effectiveness of the proposed
method.

Index Terms— Adaptive Volterra Filter, Nonlinear System
Identification, Convex Combination, Structure Selection

1. INTRODUCTION

It is widely acknowledged that in numerous of today’s telecommuni-
cation scenarios, the assumption of purely linear systems is not ful-
filled. Therefore, nonlinear models play an increasing role in system
identification and compensation of nonlinear distortions. Volterra
filters are very popular since they represent a rather general class of
nonlinear filters with memory. On the other hand, the computational
complexity of these structures can be quite demanding and hence
it is desirable to design adaptive filters with a minimum number of
coefficients while maintaining the optimum performance. However,
this is a challenging task due to the lack of a-priori knowledge about
the dimensions of the unknown nonlinear system.

In this contribution, we propose a new method which can deter-
mine the necessary number of diagonals in the second-order kernel
by means of an adaptive convex combination of two different non-
linear filters. The methodology of filter combinations has been suc-
cessfully applied to various linear adaptive filtering problems [1, 2,
3] and is based on a relatively simple concept. In our context, we
use the combination in order to determine the memory requirements
of the second-order Volterra kernel online, instead of setting this to
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a fixed value. This is a decisive difference to the commonly used ap-
proach of genetic algorithms, as the memory configuration of only
one (combined) adaptive system is performed in parallel to the actual
adaptation of the filter coefficients.

The rest of the paper is organized as follows: In Sec. 2, we
briefly summarize the second-order Volterra filtering technique in
the diagonal structure which will be exploited for scaling the ker-
nel size. Sec. 3 presents the idea of combining adaptive filters be-
fore the actual estimation algorithm is described in Sec. 4. Finally,
Sec. 5 illustrates several experimental results for different real-world
Volterra systems as well as for noise and speech signals. The main
results are then summarized in Sec. 6.

2. SECOND-ORDER VOLTERRA FILTERING IN
DIAGONAL COORDINATES

The output of a second-order Volterra filter is given by

y(k) = y1(k) + y2(k) (1)

which represents the superposition of the kernel outputs denoted by
y1(k) and y2(k). The output of the linear kernel

y1(k) =

N1−1∑
n=0

h1,n · x(k − n) := h1,k ∗ x(k) (2)

is given by a convolution of the impulse response h1,k with the input
signal x(k), whereas the nonlinear processing in the second-order or
quadratic kernel reads

y2(k) =

N2−1∑
n1=0

N2−1∑
n2=n1

h2,n1,n2 · x(k − n1) · x(k − n2). (3)

Note that the redundancy due to index permutations has been taken
into account here and thus the coefficients h2,n1,n2 correspond to
the so-called triangular form of the 2D kernel plane [4].

Although (3) implies the full summation over all unique ele-
ments of the quadratic kernel, it has been shown that for many ap-
plications with cascaded elements (as e.g. in nonlinear echo cancel-
lation) it is a valid assumption to find non-zero coefficients mainly
around the main diagonal [5, 6]. This fact can be exploited by adopt-
ing the diagonal coordinate representation which yields the equiva-
lent form of the second-order kernel

y2(k) =

W−1∑
w=0

N2−w−1∑
n=0

h2,n,w+n︸ ︷︷ ︸
:= h2,w,n

·x(k − n) · x(k − w − n)︸ ︷︷ ︸
:= xw(k−n)

(4)
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Fig. 1. Diagonal coordinate representation of a second-order Vol-
terra kernel (N2 = 16,W = 6)

and corresponds to (3) for W = N2. However, as the summations
in (4) are carried out along diagonals w, the computations may be
restricted to a certain width W < N2 in the 2D kernel plane, thus
reducing the algorithmic complexity [6]. An illustration of the dia-
gonal coordinates is given in Fig. 1. In this contribution, we pro-
pose an algorithm which yields an estimate for such a restriction, i.e.
which determines the number of actually needed kernel diagonals.

3. PROPOSED COMBINATION SCHEME

In order to determine the optimum kernel width Wopt for an un-
known system to be identified, we present a system of two Volterra
filters following a combination scheme as depicted in Fig. 2. In con-
trast to the usual idea of combining two or more adaptive linear fil-
ters with different convergence properties [1, 2] the primary goal of
this scheme is to estimate the memory width Wopt of the unknown
quadratic kernel. As we seek to perform both the system identifica-
tion task and the estimation of the number of necessary diagonals in
the quadratic kernel at the same time, we employ two Volterra filters
ĥA(k) and ĥB(k) which share the same kernel dimensions N1, N2

but differ in their number of diagonals, i.e. WA �= WB. Therefore,
the obtained modelling errors of both components will be different.

The global output ŷ(k) is given by the convex combination

ŷ(k) = η(k) · ŷA(k) + (1 − η(k)) · ŷB(k) (5)

where the corresponding outputs after (1), (2) and (4) are mixed with
0 < η(k) < 1 for every time instant k. Although both filters are
driven with the same excitation x(k) and seek to match the same
reference signal

d(k) = y(k) + n(k), (6)

they are nevertheless operated independently. Therefore, the residual
errors for both components c ∈ {A, B} are calculated according to

ec(k) = d(k) − ŷc(k) (7)

and are used for the individual adaptation of the Volterra filters.
The adjustment of the kernel coefficients is performed following the
LMS-type updates

ĥc,1,n(k + 1) = ĥc,1,n(k) +
αc,1

P1
· ec(k) · x(k − n) (8)

ĥc,2,w,n(k + 1) = ĥc,2,w,n(k) +
αc,2

P2
· ec(k) · xw(k − n) (9)

with the definitions from (4) for the quadratic kernel. As can be
seen, (8) and (9) require a separate normalization of both kernels

to their corresponding input power estimates P1, P2 (SNLMS) [6].
Analogously to (5), the resulting global error reads

e(k) = η(k) · eA(k) + (1 − η(k)) · eB(k). (10)

Note that both the calculation of the inividual errors (7) as well as the
adaptation of the component filters ĥA(k), ĥB(k) are not depicted in
Fig. 2 for the sake of readability.

As can be seen from (5) and (10), the mixing parameter η(k)
itself is also time-variant in order to obtain an effective and flexi-
ble combination. Instead of changing η(k) directly, the mixing is
moreover designed via a sigmoid activation function [2]

η(k) :=
1

1 + e−a(k)
(11)

which ensures the boundedness of η(k) to the unit interval and re-
duces the gradient noise near the limit values [1]. At each time in-
stant, the control parameter a(k) is updated in order to minimize
the squared global error (10), i.e., it is adjusted in direction of the
negative gradient − ∂e2(k)

∂a(k)
. This can be understood as a second

adaptation layer whose input is given by the difference Δe(k) :=
eB(k)−eA(k) of the component errors. Recently, it has been shown
that it is advantageous to implement the corresponding updates of
a(k) in the form of [3]

a(k + 1) = a(k) + μa ·
η(k) · (1 − η(k))

Δ̃e2(k)
· e(k) · Δe(k), (12)

which thus denotes the corresponding update equation for the nor-
malized combination control (NCC) block in Fig. 2. In (12), a
smoothed version of the error difference energy

Δ̃e2(k) := β · Δ̃e2(k − 1) + (1 − β) · Δe2(k) (13)

is used and μa is a step size which can be used to essentially adjust
the rate of change for the mixing parameter. In order not to stall the
mixing adaptation for extreme values of η(k), the control a(k) itself
is bounded to the interval [−4, +4] (see [1]).

4. KERNELWIDTH ESTIMATION ALGORITHM

The effect of the combination mechanism and its improvement on
the overall performance is well understood and has already been in-
vestigated thoroughly in [1, 2, 3]. Specifically, it has been shown that

?
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η(k)

1 − η(k)

NCCKWC

Fig. 2. Convex combination scheme (NCC) and control algorithm
(KWC) for the estimation of the optimum width of the unknown
quadratic Volterra kernel
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the value of η(k)may also be interpreted as an indicator towards the
(temporarily) superior one of the two competing filters which can be
directly related to the mean-squared errors of the individual compo-
nents [2]. Because the mixing parameter is governed by the smooth
curve given by (11), this scheme provides a soft decision on the adap-
tive filter performance which will be exploited in order to determine
the optimum width Wopt for modelling the unknown second-order
kernel in the plant.

First of all, as the widths of both component filters are real-
ized adaptively, the W in (4) are replaced by their time-variant ver-
sions Wc(k) for c = {A, B}. Note that this implies potential re-
configurations of the memory size during the convergence phase of
the kernel coefficients. Hence, it is clear that modifications of the
width by means of the kernel width control (KWC) depicted in Fig. 2
should be based on a robust indication for the performance in the
Volterra filter combination. In order to obtain such a measure, we
set the update parameter in (12) to a reasonably small value, e.g.
μa = 0.01, as to slow down the changes in η(k). Nevertheless, it is
still necessary to smooth the slope of the mixing further and thus

η̃(k) := λKWC · η̃(k) + (1 − λKWC) · η(k) (14)

denotes a suitable indicator for the modification ofWc(k). In all of
the conducted experiments, the forgetting factor has been chosen to
λKWC = 0.9999which proved to be a reliable parameter for various
systems and signal constellations.

The estimation is initialized by employing a set of filters with
WA(0) = 0 (i.e. linear filter) andWB(0) = ΔW which denotes the
fixed distance in terms of kernel diagonals between A and B. Since
the quadratic kernel of an unknown, significantly nonlinear system
will in general exhibit a width different from WB(0), the quadratic
kernels must be enabled to increase and/or decrease to this size as
well. A suitable updating mechanism for theWc(k) is given by the
following set of modification rules:

Wc(k + 1) =

⎧⎨
⎩

Wc(k) + 1, if η̃(k) ≤ ηmin + εinc

Wc(k) − 1, if η̃(k) ≥ ηmax − εdec

Wc(k), else
. (15)

Regarding (15), the number of diagonals for both filters are obvi-
ously only changed if given thresholds of η̃(k) are surpassed or
dropped below, respectively. These thresholds are defined by the
limit values ηmin = 0.018 and ηmax = 0.982 which are a direct
consequence of the restriction of a(k) and by the controls εinc and
εdec. In order to guarantee for significant decisions, these parame-
ters should be selected quite small (e.g. εinc = 0.1). Moreover, it is
imperative to avoid interference of the memory configuration adap-
tation with the convergence of the filter coefficients. Therefore, after
changes in Wc(k) according to (15) have been invoked, the modi-
fication rules remain idle for a standby time of K samples. This
ensures proper reconvergence of the filters that is mainly important
for newly added diagonals in case of an increase in width.

The mechanism is further illustrated by Fig. 3 which provides an
instructive example with a changing optimum width Wopt. As can
be seen in the initial phase©1 , the widths of both filters are below
the nonlinear memory of the unknown system. However, asWB(k)

is always larger than WA(k), ĥB(k) is capable of better modelling
the true quadratic kernel. Consequently, the soft switch η̃(k) will
clearly point to B and invoking (15) will yield an enlargement of the
number of diagonals for both filters. This situation persists until A
approaches the true widthWopt in phase©2 as then the performance
gain of component B is lost and the decision will remain halfway
between both filters. If the unknown nonlinear system changes to a

Wc(k)

WB(0)

WA(0)

ΔW
K

Wopt

©1 ©2©2 ©3

εinc

εdec

η̃(k)
ηmax

ηmin

time

Fig. 3. Ideal tracking behaviour ofWA(k), WB(k) and evolution of
the smoothed mixing parameter η̃(k)

higherWopt, the combination will track these changes and increase
the filter widths to comprise a higher number of diagonals by re-
peating the evolution in ©1 . In contrast, in case of a decreasing
nonlinear memory both filters exhibit an over-representation of the
true Volterra system. However, as WA(k) has less kernel diago-
nals and thus re-adapts faster in order to match the new situation, an
indication of η̃(k) towards A can be expected. This behaviour is il-
lustrated in phase©3 and will stop only ifWA(k) again approaches
the true quadratic kernel width. We can therefore conclude that in
steady-states of the mixing parameter evolution, system A matches
the quadratic memory size of the nonlinear system to be identified,
i.e. WA(k) ≈ Wopt holds and can be used for the estimation of the
optimum kernel width.

5. EXPERIMENTAL RESULTS

In order to demonstrate the robustness of the proposed method, we
provide several experimental results in the following. All of the ex-
periments have been performed in a scenario with a noisy reference
d(k) at an SNR of 30 dB.Moreover, the strength of the nonlinear dis-
tortions has been set such that the linear-to-nonlinear ratio (LNLR)
of signal powers was 10 dB. The step size parameters for the adap-
tation have been chosen to αc,1 = 0.3 and αc,2 = 0.1 for both
filters c ∈ {A, B}. For the proposed combination scheme, we have
employed μa = 0.01, β = 0.9 and a smoothing of the mixing pa-
rameter by λKWC = 0.9999 throughout all simulations. As it has
been found that the distance in terms of diagonals between the filters
A and B has rarely an impact on the performance of the algorithm,
this has been selected to ΔW = 2. Likewise, the same standby
time K = 16000 (which corresponds to 2 seconds duration) has
been applied for all experiments, as it represents a good compromise
between robustness and response time.

A first experiment is illustrated in the left plot of Fig. 4 which
shows the results for white Gaussian noise excitation on a second-
order Volterra system with N1 = 320, N2 = 64 and widthWopt =
16 that has been obtained by measurements from a small low-cost
loudspeaker. Different versions of the quadratic kernels have been
created by truncating the width to a total of Wopt = 24/16/8 dia-
gonals. As can be seen, the true memory width is closely matched

2967



within in tolerance of one or two diagonals. To the right, the ERLE1
performance of both an SNLMS [6] withW = 16 diagonals and the
dynamically growing system with the KWC approach are displayed
for the unknown nonlinear system withWopt = 16.
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Fig. 4. Optimum width estimation for second-order Volterra kernels
(N1 = 320,N2 = 64, loudspeaker) by white Gaussian noise

Fig. 5 shows a second experiment where a speech signal was
used as input x(k). Here, the unknown nonlinear system was rep-
resented by a Volterra filter with sizes N1 = 256,N2 = 48 that
has been extracted from an up-to-date mobile phone. For compar-
ison, the results for different choices of the modification tolerances
εinc, εdec are presented. Although an approach of WA(k) towards
the true quadratic kernel width can be seen, it should be mentioned
that it is in general more difficult to estimate the nonlinear memory
size from this signal which is due to the non-persistent excitation of
the quadratic kernel and the highly dynamic nature of speech.
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Fig. 5. Width estimation for excitation by a male speaker and various
tolerance thresholds (N1 = 256,N2 = 48, mobile phone)

Finally, Fig.6 presents some results on the tracking behaviour
of the KWC mechanism from Sec. 4. Therefore, the second-order
Volterra filter from Fig. 4 is used once again where the initial num-
ber of diagonals Wopt = 16 is changed twice. First, the width is
reduced to Wopt = 8 diagonals after 100 seconds and then raised
to Wopt = 24 after 200 seconds (see reference line in Fig. 6).
Clearly, it can be seen that changes of the kernel width can be fol-
lowed quite well by the KWC algorithm for both white Gaussian
(using εinc ≡ εdec = 0.05) and speech-like coloured Laplacian
noise (εinc ≡ εdec = 0.15). Moreover, the evolution of the soft
switch η̃(k) is depicted in the lower plot for the coloured noise.

1echo return loss enhancement [5]
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Fig. 6. Tracking of optimum kernel width (Wopt = 16/8/24) for
noise excitation and soft decision η̃(k) for coloured noise

6. CONCLUSIONS

A novel method for an online estimation of the optimum memory
size for the identification of an unknown second-order Volterra ker-
nel has been proposed. As the estimation of the number of involved
kernel diagonals is performed in parallel to the adaptation of the filter
coefficients, a robust indication on the filter performance was found
by a combination of two Volterra filters with different widths of non-
linear memory. Following some basic rules, a control mechanism
has been outlined and was shown to be effective for identifying sys-
tems with both fixed or time-varying quadratic kernels. Since the re-
alized system is dynamically growing or shrinking, the critical task
of defining the nonlinear system size a-priori is therefore overcome.
Experimental results have confirmed the theoretically expected be-
haviour for both noise and speech signals and various systems. Fu-
ture research will focus on modifications for enhanced estimation
results as well as on extensions to higher-order and DFT-domain
Volterra filtering.
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