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ABSTRACT

The Restricted Isometry Property (RIP) introduced by Candés

and Tao is a fundamental property in compressed sensing the-

ory. It says that if a sampling matrix satisfies the RIP of cer-

tain order proportional to the sparsity of the signal, then the

original signal can be reconstructed even if the sampling ma-

trix provides a sample vector which is much smaller in size

than the original signal. This short note addresses the problem

of how a linear transformation will affect the RIP. This prob-

lem arises from the consideration of extending the sensing

matrix and the use of compressed sensing in different bases.

As an application, the result is applied to the redundant dic-

tionary setting in compressed sensing.

Index Terms— Compressed Sensing, Concentration In-

equalities, Restricted Isometry Property

1. INTRODUCTION

In Compressed Sensing (CS), one considers the problem of

recovering a vector (discrete signal) x ∈ R
N from its linear

measurements y of the form

yi =< x, ϕi >, 1 ≤ i ≤ n, (1)

with n << N . If x is sparse, CS theory says that one can

actually recover x from y which is much smaller in size than

x by solving a convex program with a suitably chosen set of

sampling row vectors {ϕi|1 ≤ i ≤ n} [1][2][3]. The linear

system (1) can be written in the form of matrix multiplication

y = Φx, (2)

where Φ is an n × N matrix formed by the row vectors ϕi

called the sampling matrix. One of the Conditions that en-

sures the performance of the sampling matrix Φ is the RIP. A

matrix Φ ∈ R
n×N is said to satisfy the RIP of order k ∈ N

and isometry constant δk ∈ (0, 1) if

(1− δk)‖z‖22 ≤ ‖ΦT z‖22 ≤ (1 + δk)‖z‖22, ∀z ∈ R
|T |, (3)
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where T ⊂ {1, 2, . . . , N} satisfying |T | ≤ k, and ΦT de-

notes the matrix obtained by retaining only the columns of Φ
corresponding to the entries of T . Condition (3) is equivalent

to the condition that all the matrices Φt
T ΦT have their eigen-

values in [1− δk, 1 + δk]. For any matrix X ∈ R
r×s and any

k ∈ N, we denote the corresponding isometry constant of X
by δk(X). If there is no confusion, we will just write δk. In

particular, we always use δk for the matrix Φ.

A theorem due to Candés, Romberg, and Tao [4] says that

if Φ satisfies the RIP of order 3k, then the solution x̂ of the

following convex minimization problem

min‖x‖1 subject to Φx = y, (4)

satisfies (see also [5])

‖x− x̂‖2 ≤ C2σk(x)√
k

, (5)

where σk(x) is the �1 error of the best k-term approximation,

and C2 is a constant depending only on δ3k ∈ (0, 1).1

A condition that ensures a random matrix satisfies the RIP

with high probability is given by the concentration of measure

inequality. An n × N random matrix Φ is said to satisfy the

concentration of measure inequality if for any x ∈ R
N ,

P (|‖Φx‖22 − ‖x‖22| ≥ ε‖x‖22) ≤ 2e−nc0(ε), (6)

where ε ∈ (0, 1), and c0(ε) is a constant depending only on

ε.

The random matrices Φ = (rij) generated by the follow-

ing probability distributions are known to satisfy the concen-

tration of measure inequality with c0(ε) = ε2/4− ε3/6 [5]:

rij ∼ N

(
0,

1
n

)
,

rij =

⎧⎪⎨
⎪⎩

1√
n

with probability 1/2

− 1√
n

with probability 1/2
. (7)

According to Theorem 5.2 in [5]2, for given integers n and

N , and 0 < δ < 1, if the probability distribution generating

1It should be noted that the RIP is only a sufficient condition for recon-

struction. If Φ satisfying the RIP, cA may not satisfy the RIP for c �= 0.

However, it is clear that both A and cA lead to similar sparse recovery using

�1 program. However, this issue is beyond the current scope [6].
2In the proof given in [5], the constant c1 was first chosen such that a :=

c0(ε)δ/2 − c1[1 + (1 + log 12
δ

)/ log N
k

] > 0, then the constant c2 was

chosen such that 0 < c2 < a. Thus the constants depend also on ε.
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the n × N matrices Φ satisfies the concentration inequality

(6), then there exist constants c1, c2 > 0 depending only on δ
such that the RIP holds for Φ with the prescribed δ and any

k ≤ c1n/ log(N/k) (8)

with probability≥ 1−e−2c2n. Furthermore, this RIP for Φ is

universal in sense that it holds with respect to any orthogonal

basis used in the measurement.

There are also deterministic constructions of matrices sat-

isfying the RIP [7][8][9][10].

For application purposes, one often needs to analyze the

RIP constants of the products of a matrix Φ with known RIP

constant δ and other matrices. For example, when one consid-

ers different bases or redundant dictionaries under which the

signals of interest are sparse, matrices of the form ΦB needs

to be analyzed [2][11], where B is given by the basis or the

dictionary. For another example, if the size of Φ is n × N
with n < N , one would like to extend Φ to AΦB of size

m × q with m < n < N < q if possible, since that gives a

further reduction on the number of measurements one needs

to collect: for Φ, the number of measurements is n; while for

AΦB, the number of measurements is m.

These situations can be formulated under a more general

framework by asking the following question: If a matrix Φ of

size n × N satisfies the RIP with a given isometry constant

0 < δ < 1 (with certain probability if Φ is random), and A, B
are given matrices of sizes m×n and N×q respectively, then

what is the isometry constant of the matrix AΦB?

In section 2, we first show that if all Φ, A, and B are ran-

dom and satisfy the concentration of measure inequality, then

AΦB satisfies the concentration of measure inequality, there-

fore it has RIP. Then we observe that if deterministic matrix

is involved, the problem is more complicated, but it can still

be analyzed by using the SVDs of A and B. It is not possible

to multiply by a deterministic A from the left to achieve more

reduction on the number of measurements without further as-

sumption. Our result shows that it is possible to extend the

matrix Φ by multiplying a deterministic B from the right to

extend Φ if Φ is random, though the isometry constant will

be changed. This result can be applied to redundant dictio-

nary setting to give a different approach for using CS with

redundant dictionaries.

2. MAIN RESULT

We first consider the random case. Let Φ be an n × N ma-

trix satisfying the concentration inequality (6) with constant

ε, and let A (respectively B) be a random matrix size m × n
(respectively N × q) satisfying the concentration inequality

(6) with ε1 (respectively, ε2). Then we have:

Theorem 2.1. Assume that all ε, ε1, ε2 < 1/3. The matrix
AΦ satisfies the concentration inequality

P (|‖AΦx‖22 − ‖x‖22| ≥ ε3‖x‖22) ≤ 2e−mc′0 ,

where ε3 = ε + ε1(1 + ε), and c′0 is a constant that depends
only on c0(ε) and c0(ε1) (as defined in (6)). The same state-
ment holds for ΦB with ε3 = ε + ε2(1 + ε) and m replaced
by n.

Proof. We give the proof for the case of left multiplication

by A, the proof for the case of right multiplication by B is

similar. By assumption, with probability ≥ 1 − 2e−mc0(ε1),

the matrix A satisfies

(1− ε1)‖y‖22 < ‖Ay‖22 < (1 + ε1)‖y‖22, for any y ∈ R
n.

Replacing y by Φx (x ∈ R
N ), we have

(1− ε1)‖Φx‖22 < ‖AΦx‖22 < (1 + ε1)‖Φx‖22. (9)

Again by assumption, with probability ≥ 1 − 2e−nc0(ε), the

matrix Φ satisfies

(1− ε)‖x‖22 < ‖Φx‖22 < (1 + ε)‖x‖22, for any x ∈ R
N . (10)

Now the statement follows by combining (9) and (10).

Remark. If m ≤ n, the constant c′0 in Theorem 2.1 can be

roughly estimated by the inequality c′0 ≤ c0(ε′) − log 2/m,

where c0(ε′) = min{c0(ε1), c0(ε)}. This is obtained from

1− (1− 2e−mc0(ε1))(1− 2e−nc0(ε)) ≤ 2e−m(c0(ε
′)−log 2/m).

More precise estimation can be carried out, but we are not

concerning this point here.

Now we consider the cases when deterministic matrices

are involved. We observe that it is not possible to multiply

a deterministic matrix A from the left to extend the sensing

matrix to achieve further reduction on the number of measure-

ments without other assumptions. To see this, we consider the

SVD of A.

For any positive integer d, let O(d) be the set of d × d
orthogonal matrices. There exists U ∈ O(n) such that

AtA = U t

⎛
⎜⎜⎜⎝

σ1

σ2

. . .

σn

⎞
⎟⎟⎟⎠ U, (11)

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Since for any T ⊂
{1, 2, . . . , N}, (AΦ)T = AΦT , we have

(AΦ)t
T (AΦ)T = Φt

T AtAΦT (12)

= Φt
T U t

⎛
⎜⎜⎜⎝

σ1

σ2

. . .

σn

⎞
⎟⎟⎟⎠ UΦT

= (UΦ)t
T

⎛
⎜⎜⎜⎝

σ1

σ2

. . .

σn

⎞
⎟⎟⎟⎠ (UΦ)T .
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If m < n, then σm+1 = · · · = σn = 0, and hence

⎛
⎜⎜⎜⎝

σ1

σ2

. . .

σn

⎞
⎟⎟⎟⎠ (UΦ)T =

(
A1

0

)

for a suitable block matrix A1. From the last matrix one can

see immediately that RIP fails: any information carried by the

last m− n entries will be lost.

If m ≥ n, then we can change Φ by multiplying A from

the left if A has full column rank. Since under this assump-

tion, all σi > 0. Note that UΦ has the same RIP as Φ, so

if δk is the RIP constant of Φ corresponding to all T of size

k ≤ N , we can bound the RIP constant of AΦ by σn(1− δk)
and σ1(1 + δk). In fact, for z ∈ R

k, if we let UΦT z = y =
(y1, . . . , yn)t, then ‖y‖2 = ‖ΦT z‖2, and according to (12)

σn‖y‖22 ≤ ‖AΦT z‖22 =
n∑

i=1

σiy
2
i ≤ σ1‖y‖22. (13)

Thus we have (use (3))

σn(1− δk)‖z‖22 ≤ ‖AΦT z‖22 ≤ σ1(1 + δk)‖z‖22. (14)

Note that the above analysis works whether Φ is random or

deterministic.

Next, we consider the product ΦB. In this case, we need

to distinguish between random matrix Φ and deterministic

matrix Φ. Assume that Φ is a random matrix satisfying the

concentration inequality (6) and hence satisfying the RIP in-

equality (3) with probability ≥ p. Note that the concentration

inequality is invariant under the right multiplication by an or-

thogonal matrix. That is, if U ∈ O(N), then ΦU also satisfies

(3) with probability ≥ p.

Let B be an N × q matrix. To make the argument clearer,

we assume that T ⊂ {1, 2, . . . , q} with |T | = k < N (note

that this is sufficient for our purpose). We have U ∈ O(N)
and V ∈ O(k) such that

BT = U

(
D
0

)
N×k

V, (15)

where

D =

⎛
⎜⎜⎜⎝

λ1

λ2

. . .

λk

⎞
⎟⎟⎟⎠ , λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

For x ∈ R
k,

ΦBT x = ΦU

(
D
0

)
N×k

V x. (16)

Let

z =
(

D
0

)
V x ∈ R

N .

Then z is k-sparse (the last N−k entries are always 0). Thus,

since ΦU has the same RIP as Φ, we have

(1− δk)‖z‖22 ≤ ‖ΦBT x‖22 = ‖ΦUz‖22 ≤ (1 + δk)‖z‖22 (17)

with probability ≥ p.

Let y = (y1, . . . , yk)t = V x, then ‖y‖2 = ‖x‖2, and

‖z‖22 = xtV t(Dt 0)
(

D
0

)
V x

= yt

⎛
⎜⎜⎜⎝

λ2
1

λ2
2

. . .

λ2
k

⎞
⎟⎟⎟⎠ y =

k∑
i=1

λ2
i y

2
i .

Since

λ2
k‖y‖22 ≤

k∑
i=1

λ2
i y

2
i ≤ λ2

1‖y‖22,

by (17), we have

λ2
k(1− δk)‖x‖22 ≤ ‖ΦBT x‖22 ≤ λ2

1(1 + δk)‖x‖22 (18)

with probability ≥ p.

If Φ is deterministic, then for arbitrary U ∈ O(N), ΦU
may not satisfy the same RIP as Φ, and we do not have a good

analysis of ΦB for this case at the moment. Summarize our

discussion, we have:

Theorem 2.2. Notation as before.
(1) If A is deterministic, then regardless whether Φ is ran-

dom or deterministic, AΦ has RIP if and only if A has full
column rank. If that is the case, the RIP constant of AΦ can
be obtained from (14). If Φ is random, then the probability
for AΦ to satisfy RIP is the same as that of Φ (with possible
different RIP constant).

(2) If Φ is a random matrix satisfying the concentration
inequality (6) (hence satisfying the RIP (3) with probability
at least p), and B is an N × q deterministic matrix such that
δk(B) ∈ (0, 2

1+δk
), then with probability at least

1−
(

q
k

)
(1− p), (19)

the matrix ΦB satisfies the RIP with the same order as that of
Φ and a possible different RIP constant δk(ΦB) determined
by (18).
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3. REDUNDANT BASES IN COMPRESSED SENSING

In this section, we apply Theorem 2.2 to redundant bases set-

ting in compressed sensing. From (8), we see that for given

N and k, the random matrices of size n × N generated by

the distributions described in (7) satisfy the RIP with high

probability as long as n ≥ Ck log(N/k) for some constant

C. Therefore it is desirable to reduce the integer k, i.e. to

increase the sparsity level of the signal, by considering redun-

dant bases (or redundant dictionaries). Recall that if a set of

vectors B spans a vector space V , then we call B a basis if

B is linearly independent and call B a redundant basis other-

wise. To apply compressed sensing to a signal y ∈ R
N that

has a sparse representation x under a redundant basis B of

size q > N , we need to consider how the combination of a

good sensing matrix with a redundant basis affects the RIP.

Let B be the matrix corresponds to the redundant basis B.

Then B is of size N×q and y = Bx with x ∈ R
q sparse. This

problem has been considered in [2][11]. In particular, in [11],

a detailed analysis of the situation was given. According to

Theorem 2.2 in [11], if Φ satisfies the concentration inequality

(6) with 3

n ≥ Cδ−2
k [k(log(

N

k
) + log e(1 +

12
δk

)) + log 2 + t], (20)

for some δk ∈ (0, 1) and t > 0, then with probability at least

1− e−t, the restricted isometry constant of ΦB satisfies

δk(ΦB) ≤ δk(B) + δk(1 + δk(B)). (21)

We now apply Theorem 2.2 to obtain a similar result.

Theorem 3.1. Notation as above. With the isometry constant
satisfying

δk(ΦB) ≤ δk(B) + δk(Φ)(1 + δk(B)) (22)

and the probability bound given by (19), the matrix ΦB sat-
isfies the RIP with the same order as that of Φ.

Proof. One just needs to note that the numbers λk and λ1

which appear in (18) satisfy 1 − δk(B) ≤ λ2
k ≤ λ2

1 ≤ 1 +
δk(B).

For examples of redundant bases satisfying the condition

in Theorem 3.1, we refer the readers to [11].

4. CONCLUSION AND DISCUSSION

We analyzed the problem of how the multiplication of a ma-

trix to a good sensing matrix affects its RIP. This type of prob-

lems arise in CS when one wants to extend the sensing matrix

3There should be a factor S (which is our k) for the term log(e(1+12/δ))
in the bound for n given in [11]. This affects some later estimates in [11].

by taking the product of the sensing matrix with another ma-

trix. A particular interesting example is the application of CS

under the redundant bases setting. Our result in this short note

provides some basic theory for further investigation on the

RIP and its applications in CS under different settings. Fu-

ture work includes constructing good redundant bases, which

is related to constructing good deterministic sensing matrices,

and analyzing their properties under CS.
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