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ABSTRACT

A traditional assumption underlying most data converters is that the
signal should be sampled at a rate exceeding twice the highest fre-
quency. Practical signals often posses a sparse structure so that a
large part of the bandwidth is not exploited. In this paper, we con-
sider a framework for utilizing this sparsity in order to sample such
analog signals at a low rate. By relying on results developed in the
context of compressed sensing (CS) of finite-length vectors, we de-
velop a general framework for low-rate sampling of signals in shift-
invariant spaces. In contrast to the problems treated in the context of
CS, here we explicitly consider sampling of analog signals for which
no underlying finite-dimensional model exists.

Index terms – Sampling methods, Compressed sensing.

1. INTRODUCTION

Digital applications rely on sampling a continuous-time signal to ob-
tain a discrete-time representation. A class of signals that play an im-
portant role in sampling theory are shift-invariant (SI) spaces [1, 2].
Such functions can be expressed as linear combinations of shifts of
a set of generators with period T . This model encompasses many
signals used in communication and signal processing.

Any signal x(t) in a SI space generated by m functions shifted
with period T can be perfectly recovered from m sequences, ob-
tained by filtering x(t) with a bank of m filters and uniformly sam-
pling their outputs at times t = nT . The overall sampling rate of
this scheme ism/T . In Section 2 we show explicitly how to recover
x(t) from these samples using an appropriate filter bank. If x(t) is
generated by a known subset k of the m generators, then it suffices
to sample at an average rate of k/T . However, a more difficult ques-
tion is whether the rate can be reduced if we know that only k of the
generators are active, but we do not know in advance which ones.
Since in principle x(t)may be comprised of any of the generators, it
may seem at first that the rate cannot be lower thanm/T .

This question is a special case of sampling a signal in a union
of subspaces [3, 4]. In [3] necessary and sufficient conditions where
derived to ensure invertibility of a sampling operator over such a
union. In our problem this essentially reduces to the requirement that
the sampling rate is at least 2k/T . However, no concrete algorithms
where provided to recover such a signal from a given set of samples.

One case of sampling on a union of spaces that has been studied
extensively is compressed sensing (CS). In this setting, the goal is
to recover a length-m vector x from p < m linear measurements,
where x has at most k non-zero elements [5, 6]. Many methods have
been proposed to efficiently recover x [5]. Algorithms for signal re-
covery in an arbitrary finite union of subspaces where developed in
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[4]. A fundamental difference between our problem and these results
is that we aim to reconstruct a continuous signal, while the classical
CS problem is the recovery of discrete and finite vectors. The meth-
ods developed in the context of CS rely on the finite nature of the
problem and cannot be immediately adopted to infinite-dimensional
settings without discretization or heuristics.

The model we treat here is inherently infinite-dimensional as it
involves an infinite sequence of samples from which we would like
to recover an analog signal with infinitely many parameters. A spe-
cial case is when x(t) has a multiband structure [7]. Explicit sub-
Nyquist reconstruction schemes that ensure perfect recovery of x(t)
at the minimal possible rate were recently developed in [7]. The im-
portant aspect of these results is that they do not require knowledge
of the band locations. The cornerstone of these algorithms is a set of
operations grouped under a block named continuous-to-finite (CTF).
The CTF allows to transform the continuous reconstruction problem
into a finite dimensional equivalent, without discretization or heuris-
tics. The resulting problem is formulated within the CS framework,
and thus can be solved efficiently using known tractable algorithms
from this area. The CTF block has been further studied in [8].

Here, we combine ideas from standard sampling theory and CS
via the CTF block in order to develop a more general framework for
analog compressed sensing. In particular, we show explicitly how
signals in a SI union created bym generators with period T , can be
sampled and stably recovered at a rate much lower than m/T us-
ing CS algorithms. Essentially, we use a front-end borrowed from
analog sampling theory, together with a mixing matrix that satisfies
the CS requirements. Combining these two components via the CTF
block allows to sample analog signals at a low rate, while still ensur-
ing stable and efficient recovery for a large class of problems.

2. SHIFT-INVARIANT SUBSPACE SAMPLING

Traditional sampling theory deals with the recovery of a function
x(t) in L2 from its uniform samples. To this end, it is typically as-
sumed that x(t) lies in a subspaceA. A common choice is a finitely-
generated SI subspace, generated bym functions a�(t) [1, 2]:

A =

{
x(t) =

m∑
�=1

∑
n∈Z

d�[n]a�(t − nT ) : d�[n] ∈ �2

}
, (1)

where T is the sampling period. In the Fourier domain,

X(ω) =

m∑
�=1

D�(e
jωT )A�(ω), (2)

where
D�(e

jωT ) =
∑
n∈Z

d�[n]ejωnT , (3)
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and is 2π/T periodic. To emphasize the fact that the discrete-time
Fourier transform (DTFT) is 2π-periodic we use the notationD(ejω).

To guarantee a unique stable representation of any x(t) ∈ A,
the generators a�(t) are chosen to form a Riesz basis for L2, so that

αI � MAA(ejω) � βI, a.e. ω, (4)

for some constants 0 < α ≤ β < ∞, where

MAA(ejω) =

⎡
⎢⎣

φA1A1(e
jω) . . . φA1Am(ejω)

...
...

...
φAmA1(e

jω) . . . φAmAm(ejω)

⎤
⎥⎦ . (5)

Here

φSA(ejω) =
1

T

∑
k∈Z

S∗
(

ω

T
− 2π

T
k

)
A

(
ω

T
− 2π

T
k

)
, (6)

and is the DTFT of the cross correlation sequence rsa[n] =
〈s(t − nT ), a(t)〉, where

〈s(t), a(t)〉 =

∫ ∞

t=−∞
s∗(t)a(t)dt, (7)

and (·)∗ denotes the complex conjugate. Throughout the paper we
assume that (4) is satisfied.

Since x(t) lies in a space generated by m functions, we sample
it by pre-filtering the signal withm filters s∗� (−t) [9], and then sam-
pling their outputs at times t = nT . The sequence of samples c�[n]
can then be represented as the inner products

c�[n] = 〈s�(t − nT ), x(t)〉, 1 ≤ � ≤ m. (8)

Taking the Fourier transform of c�[n] and using (1) [9]

c(ejω) = MSA(ejω)d(ejω), (9)

where c(ejω),d(ejω) are the vectors whose �th elements
C�(e

jω), D�(e
jω) are the DTFTs of c�[n], d�[n] respectively, and

MSA(ejω) is the matrix with elements φSiA�(e
jω), defined by (6).

Consequently, as long asMSA(ejω) is invertible a.e. in ω, d(ejω)
can be recovered from c(ejω) by d(ejω) = M−1

SA(ejω)c(ejω). The
signal x(t) is then constructed by modulating each of the outputs
d�[n] by a sequence of impulses

∑
n δ(t − nT ) with period T ,

and filtering with the corresponding analog filter a�(t). In prac-
tice, we may choose any set of sampling functions {s�(t)} for which
MSA(ejω) is stably invertible in order to guarantee perfect recon-
struction of x(t). This approach consists ofm sequences of samples,
each at rate 1/T , leading to an average sampling rate ofm/T .

The resulting sampling scheme can be interpreted as a basis ex-
pansion of any x(t) in A. To see this, let

v(ω) = M−∗
SA(ejωT )s(ω), (10)

where v(ω), s(ω) are the vectors with �th elements V�(ω), S�(ω),
with s�(t) being an arbitrary set of functions such that MSA(ejω)
is invertible, and (·)−∗ denoting the inverse of the matrix conjugate.
Then it can be easily seen that

x(t) =
m∑

�=1

∑
n∈Z

〈v�(t − nT ), x(t)〉a�(t − nT ), (11)

which is a basis expansion of x(t). The functions {v�(t−nT )} have
the property that they are biorthogonal to {a�(t − nT )}, namely,

〈v�(t − nT ), ai(t − rT )〉 = δ�iδnr, (12)

where δ�i = 1 if � = i, and 0 otherwise. The inner products in
(12) can be obtained by filtering x(t) with the filters v∗

� (−t), and
uniform sampling the outputs at times nT . Note that although s�(t)
are arbitrary, the biorthogonal vectors in A are unique.

2.1. Union of Shift-Invariant Subspaces

Evidently, when subspace information is available, perfect recon-
struction is possible using a simple filter bank. A more interesting
scenario is when x(t) lies in a union of SI subspaces. Here we con-
sider the case in which

x(t) =
∑
|�|=k

∑
n∈Z

d�[n]a�(t − nT ), (13)

where the notation |�| = kmeans a sum over k elements, so that only
k out of the m sequences d�[n] in the sum (13) are not identically
zero. Our goal is to recover x(t) of (13) from a given set of samples.

In principle, if we know which k sequences are non-zero, then
x(t) can be recovered from samples at the output of k filters. The
average sampling rate in this case is k/T since we have k sequences
of samples, each at rate 1/T . Alternatively, even without knowledge
of the active subspaces, we can recover x(t) from samples at the
output of m filters resulting in a sampling rate of m/T . Although
this strategy does not require knowledge of the active subspaces, the
price we pay is an increase in sampling rate.

The goal in this paper is to develop algorithms for recovering
x(t) from a set of 2k ≤ p < m sampling sequences, obtained by
sampling the outputs of p filters at rate 1/T . To this end we rely
on ideas developed in the CS literature. Specifically, we show that
by proper choice of the sampling filters si(t), 1 ≤ i ≤ p recovery
of x(t) can be translated into an infinite measurement vector (IMV)
model [8, 7], which is a broad framework for many CS-type prob-
lems. We may then rely on results obtained in that context to recover
x(t) from the given samples. As we show, if we are not concerned
with computational complexity and stability issues, then p = 2k
sampling sequences suffice to recover x(t) by brute-force solving
an optimization problem with combinatorial complexity. By slightly
increasing the number of filters, efficient reconstruction can be ob-
tained by solving a finite-dimensional convex optimization problem.

3. COMPRESSED SENSING

A central part of our paradigm relies on CS of finite vectors. The
standard CS problem is to recover a k-sparse vector x of length m
from p < m measurements y = Ax where A is a p × m matrix.
A sufficient condition to ensure a unique k-sparse solution is thatA
has Kruskal-rank σ(A) ≥ 2k, where σ(A) is the maximal number
q such that every q columns are linearly independent. The unique x
can be found by solving the problem [5]:

min
x

‖x‖0 s. t. y = Ax, (14)

where ‖x‖0 denotes the number of non-zero elements in ‖x‖. Since
(14) is NP-hard, several alternative algorithms have been proposed
that have polynomial complexity, such as �1 optimization [5, 6]. For
a given sparsity, these techniques are guaranteed to recover x as long
as certain conditions on A are satisfied. These efficient methods
require a number of measurements p that is larger than 2k, however
still considerably smaller than m. For example, if A is chosen as
p random rows from the Fourier matrix, then the �1 program will
recover x with high probability as long as p ≥ ck log m where c is
a constant.
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These results have been generalized to the multiple-
measurement vector (MMV) problem in which the goal is to
recover an unknown matrix X from measurements Y = AX,
where X has at most k non-zero rows. Here again, if σ(A) ≥ 2k,
then there is a unique X consistent with Y, which can be found
by combinatorial optimization. Efficient algorithms that recover
X under certain conditions on A have also been proposed for
this problem [10],[8]. In the sequel, when we refer to a matrix A
satisfying the CS requirements, we mean that with high probability
it may be used to sense a sparse vector x in such a way that x can
be recovered efficiently from the given measurements.

3.1. Infinite Model

A recent extension of the MMV model that will be instrumental
in our sampling framework, is to the IMV case in which there are
infinitely-many unknown vectors x and measurement vectors y:

y(λ) = Ax(λ), λ ∈ Λ. (15)

Here Λ is a possibly infinite set, which may be uncountable, such
as the frequencies ω ∈ [−π, π). The k-sparse IMV model assumes
that the vectors {x(λ)}, denoted x(Λ), are jointly sparse, so that the
non-zero elements are supported on a fixed location set of size k [8].

As in the MMV case, σ(A) ≥ 2k ensures a unique solution.
However, a major difficulty with the IMV model is that it is not clear
how to recover the entire set x(Λ) since there are infinitely many
equations to solve. In [8] it was shown that (15) can be converted
to a finite MMV without loosing any information by a set of opera-
tions referred to as the continuous-to-finite (CTF) block. The essen-
tial idea is to first recover the support S of x(Λ) by solving a finite
MMV, and then reconstruct x(Λ) from the data y(Λ) and knowl-
edge of S. The reason for this separation is that once S is known,
(15) becomes invertible.

To see this, letAS denote the matrix containing the columns of
A with indices in S. Since x(Λ) is k-sparse, |S| ≤ k. Because
σ(A) ≥ k, AS consists of linearly independent columns imply-
ing that A†

SAS = I, where A†
S = (A∗

SAS)−1 A∗
S is the pseudo-

inverse ofAS . Using S, (15) can be written as

y(λ) = ASxS(λ), λ ∈ Λ, (16)

where the superscript xS(λ) is the vector that consists of the entries
of x(λ) in the locations S. Multiplying (15) byA†

S gives

xS(λ) = A†
Sy(λ), λ ∈ Λ. (17)

Since the elements in x(λ) not supported on S are all zero, (17) leads
to exact recovery of x(Λ) once the finite set S is correctly identified.

To find S we rely on the following theorem from [8] which is
based on the fact that span(y(Λ)) is finite since y(Λ) has finite
length for every λ:

Theorem 1 Suppose (15) has a unique k-sparse solution set x(Λ)
with support S and that σ(A) ≥ 2k. LetV be a matrix with column
span equal to span(y(Λ)). Then, the linear systemV = AU has a
unique k-sparse solutionU whose support is equal to S.

Theorem 1 allows to avoid the infinite structure of (15), and instead
find the set S by solving the single MMV systemV = AU.

To apply Theorem 1 we need to construct a matrix V with
column span equal to span(y(Λ)). A possible method is to form
the matrix Q =

∫
y(λ)y∗(λ)dλ if Λ is continuous, or Q =∑

y(λ)y∗(λ) if Λ is a discrete set. Then every matrixV satisfying

Q = VV∗ has a column span equal to span(y(Λ)). In particular,
the columns ofV can be chosen as the eigenvectors ofQ multiplied
by the square-root of the corresponding eigenvalues. The CTF block
is depicted in Fig. 1.

Fig. 1. Continuous-to-finite (CTF) block.

4. COMPRESSED SENSING OF SI SIGNALS

We now combine the ideas of Sections 2 and 3 in order to recover
x(t) of the form (13), where we do not know which k subspaces are
chosen. Our sampling strategy is to filter x(t) with p < m sampling
filters si(t), and uniformly sample their outputs at rate 1/T .

To design si(t) we first choose a p × m matrix A to sample a
k-sparse vector x of length m. Using standard CS results we can
selectA to either guarantee exact recovery with combinatorial opti-
mization assuming p ≥ 2k, or lead to recovery (possibly only with
high probability) using efficient algorithms with p > 2k. We show
below that the sameA chosen for this finite problem can be used for
analog CS. Specifically, our design relies on two ingredients:
1. A matrix A that solves a discrete CS problem in the dimen-
sionsm (vector length) and k (sparsity).

2. A set of functions hi(t), 1 ≤ i ≤ m which can be used to
sample and reconstruct the entire set of generators ai(t), 1 ≤
i ≤ m, namely such thatMHA(ejω) is stably invertible.

Note that hi(t) can be used to recover x(t); however, since there are
m functions this results in more measurements than actually needed.

4.1. Union of Discrete Sequences

In order to motivate our choice of sampling functions, we begin by
considering the simpler scenario in which our goal is to recover the
discrete-time vector sequence d[n]with �th component d�[n], where
only k out of them sequences d�[n] are non-zero. We then show that
using sampling functions h�(t) for which MHA(ejω) is invertible,
we can convert our problem to this discrete counterpart.

The problem of recovering a union of discrete sequences can be
solved by using the IMV model of Section 3.1. Indeed, suppose we
measure d[n] using a matrix A of size p × m that allows for CS of
k-sparse vectors of lengthm. Then, at each n, we have

y[n] = Ad[n], n ∈ Z. (18)

This system is an IMV model: The infinite set of vectors {d[n], n ∈
Z} have a joint sparsity pattern since at most k sequences d�[n] are
non-zero. As we described in Section 3.1, such a system of equations
can be solved by transforming it into an equivalent MMV, whose
recovery properties are determined by those of A. Since A was
designed such that CS techniques will work, we are guaranteed that
d[n] can be recovered for each n using the CTF block. Instead of
solving (18) we may also consider the Frequency-domain equations:

y(ejω) = Ad(ejω), 0 ≤ ω < 2π, (19)

where y(ejω),d(ejω) are the vectors with components
Y�(e

jω), D�(e
jω). In principle, we may apply the CTF block

to either representations, depending on which choice offers a
simpler method for determining a basisV for the range of {y(Λ)}.
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4.2. Biorthogonal Expansion

We have shown that given the ability to sample the m sequences
d�[n] we can recover them exactly from p < m discrete-time se-
quences. We now utilize these results to compressively sample x(t).

Our approach is based on two conceptual steps: We first use
a biorthogonal set of vectors in order to obtain the m coefficient
sequences d�[n]. Specifically, we sample x(t)with the filters v∗

� (−t)
given in the Fourier domain by

v(ω) = M−∗
HA(ejωT )h(ω), (20)

where hi(t) are any sampling functions for which MHA(ejω) is
stably invertible. In the next step, we measure d�[n] compressively.
This is equivalent to sensingm discrete-time sequences, where only
k are non-zero which can be achieved by multiplying the sequences
by anm×pmatrixA that satisfies the requirements of CS. Combin-
ing these two steps, the compressed measurement sequences y�[n]
can be obtained directly from x(t), by filtering x(t) with p analog
filters s�(t) and uniformly sampling their outputs at time nT . The
sampling functions s�(t) are the result of concatenating the biorthog-
onal functions (20) with the discrete-time filter bank A, as depicted
in Fig. 2, and summarized in the following theorem.

� h∗
m(−t) ����

t = nT

�
�

yp[n]

... ...
...

� h∗
1(−t) ����

t = nT

�

�
y1[n]

x(t)
� M−1

HA(ejω)

�dm[n]

�d1[n]

A

Fig. 2. Analog compressed sampling with arbitrary filters hi(t).

Theorem 2 Let the compressed measurement sequences y�[n], 1 ≤
� ≤ p be the output of the hybrid filter bank in Fig. 2. Then {y�[n]}
can be obtained by filtering x(t) with p filters {s∗� (−t)} and sam-
pling the outputs at rate 1/T with

s(ω) = A∗v(ω) = A∗M−∗
HA(ejωT )h(ω), (21)

where s(ω),h(ω) are the vectors with �th elements S�(ω), H�(ω).

Theorem 2 is the main result which allows for compressive sampling
of analog signals. Specifically, starting from any matrixA that satis-
fies the CS requirements of finite vectors, and a set of functions hi(t)
for whichMHA(ejω) is invertible, we can create sampling functions
si(t) to compressively sample x(t). The sensing is performed by fil-
tering x(t) with the p < m corresponding filters, and sampling their
outputs at rate 1/T . Reconstruction from the compressed measure-
ments yi[n], 1 ≤ i ≤ p is obtained by applying the CTF block in
order to recover the sequences di[n]. The original signal x(t) is then
constructed by modulating appropriate impulse trains and filtering
with ai(t), as depicted in Fig. 3.

5. CONCLUSION

We developed a general framework to treat sampling of sparse ana-
log signals. We focused on signals that lie in a SI space generated

� s∗p(−t) ���
�

t = nT

�yp[n]

� �× � am(t) �

∑
nδ(t − nT )

�

dm[n]

...

� s∗1(−t) ���
�

t = nT

�y1[n]

� �× � a1(t) �

∑
nδ(t − nT )

�

d1[n]

x(t)� CTF � �x(t)

�

�...

Fig. 3. Compressed sensing of analog signals.

bym kernels, where only k out of them generators are active. The
difficulty arises from the fact that we do not know which k are cho-
sen. Our approach was based on merging ideas from standard ana-
log sampling, with results from CS. The latter focuses on sensing
sparse finite dimensional vectors. Although our problem is inher-
ently infinite-dimensional, we showed that by using the notion of
biorthogonal sampling sets and the CTF block [8, 7], we can convert
our problem to a finite-dimensional CS counterpart.
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