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ABSTRACT

In this paper we analyze the local and global convergence behav-
ior of sampling series with non-equidistant sampling points for the
Paley-Wiener space PW1

π and sampling patterns that are made of
the zeros of sine-type functions. It is proven that the sampling se-
ries are locally uniformly convergent if no oversampling is used and
globally uniformly convergent if oversampling is used. Furthermore,
we show that oversampling is indeed necessary for global uniform
convergence, because for every sampling pattern there exists a signal
such that the peak value of the approximation error grows arbitrar-
ily large if no oversampling is used. Finally, we use these findings
to obtain similar results for the mean-square convergence behavior
of sampling series for bandlimited wide-sense stationary stochastic
processes.

Index Terms— Sampling series, sine type, non-equidistant
sampling, reconstruction, stochastic process

1. INTRODUCTION AND MOTIVATION

The reconstruction of bandlimited signals from their samples is im-
portant for many applications in signal processing, communication,
and information theory. The Shannon sampling series

f(t) =
∞∑

k=−∞
f(k)

sin(π(t− k))

π(t− k)
(1)

with sinc-kernel is probably the most prominent example of a re-
construction process. However, it is not the only possible one. In
particular for practical applications, non-equidistant sampling pat-
terns are of interest. In this paper we analyze sampling patterns that
are determined by the zeros of sine type functions.

In order to continue, we need some notations and definitions.
Let f̂ denote the Fourier transform of a function f , where f̂ is to
be understood in the distributional sense. Lp(R), 1 ≤ p < ∞, is
the space of all pth-power Lebesgue integrable functions on R, with
the usual norm ‖ · ‖p, and L∞(R) is the space of all functions for
which the essential supremum norm ‖ · ‖∞ is finite. For σ > 0
and 1 ≤ p ≤ ∞ we denote by PWp

σ the Paley-Wiener space of
signals f with a representation f(z) = 1/(2π)

∫ σ

−σ
g(ω) eizω dω,

z ∈ C, for some g ∈ Lp[−π, π]. If f ∈ PWp
σ then g(ω) =

f̂(ω). The norm for PWp
σ , 1 ≤ p < ∞, is given by ‖f‖PWp

σ
=

(1/(2π)
∫ σ

−σ
|f̂(ω)|p dω)1/p.
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We analyze the local and global convergence behavior of the
sampling series

N∑
k=−N

f(tk)φk(t), (2)

where φk, k ∈ Z, are certain reconstruction functions, determined
by sine-type functions, and {tk}k∈Z is the sequence of real sampling
points. Without loss of generality we assume that t0 = 0, and that
the sequence of zeros is ordered strictly increasingly, i.e.,

. . . < t−N < . . . < t−1 < t0 < t1 < . . . < tN < . . . . (3)

Before we proceed, we define functions of sine type and state
several of their key properties. For further details and proofs we
would like to refer the reader to [1] and [2].

Definition 1. An entire function f of exponential type π is said to
be of sine type if

(i) the zeros of f are separated, and

(ii) there exist positive constants A, B, and H such that

A eπ|y| ≤ |f(x + iy)| ≤ B eπ|y|

whenever x and y are real and |y| ≥ H .

Example 1. sin(πz) is a function of sine type and its zeros are tk =
k, k ∈ Z.

The class of functions of sine type is very large. In section 4.2
we will present one possibility to construct such functions. Further-
more, functions of sine type have many interesting properties. One
concerns their behavior outside circles centered around the zeros of
the function, another the distribution of their zeros. Since we will
need these properties later, we state them in Lemmas 1 and 2.

Lemma 1. Let f be a function of sine type, whose zeros {λk}k∈Z

are ordered increasingly according to their real parts. Then we have

inf
n∈N

|λn+1 − λn| ≥ δ > 0 (4)

and
sup
n∈N

|λn+1 − λn| ≤ δ < ∞ (5)

for some constants δ and δ.

Lemma 2. Let f be a function of sine type. For each ε > 0 (in
particular for ε = δ/2) there exists a number C1 > 0 such that

|f(x + iy)| ≥ C1 eπ|y|

outside the circles of radius ε centered at the zeros of f .

Furthermore, there is an important connection between the set
of zeros {tk}k∈Z of sine-type functions, the basis properties of the
system of exponentials {eiωtk}k∈Z, and complete interpolating se-
quences [1, pp. 143–144].
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Lemma 3. If {tk}k∈Z is the set of zeros of a function of sine type,
then the system {eiωtk}k∈Z is a Riesz basis for L2[−π, π], and
{tk}k∈Z is a complete interpolating sequence for PW2

π .

Definition 2. We say that a sequence {tk}k∈Z is a complete interpo-
lating sequence for PW2

π if the interpolation problem f(tk) = ck,
k ∈ Z, has exactly one solution f ∈ PW2

π for every sequence
{ck}k∈Z satisfying

∑∞
k=−∞|ck|2 < ∞.

Since the sequence of sampling points {tk}k∈Z is a complete
interpolating sequence for PW2

π , it follows by definition that, for
each k ∈ Z, there is exactly one function φk ∈ PW2

π that solves the
interpolation problem

φk(tl) =

{
1 l = k

0 l �= k.
(6)

Moreover, the product φ(z) = limN→∞
∏
|k|≤N (1− z/tk) con-

verges uniformly on |z| ≤ R for all R < ∞ and φ is an entire
function of exponential type π [2]. As a consequence,

φk(t) =
φ(t)

φ′(tk)(t− tk)
(7)

is the unique function in PW2
π that solves the interpolation problem

(6).
Lemma 3 implies that if φ is a function of sine type with zeros

{tk}k∈Z then {φk}k∈Z, where φk is given by (7), is a Riesz basis
for PW2

π .

Lemma 4. If {φk}k∈Z is a Riesz basis for PW2
π then there exist

positive constants A and B such that for all M, N ∈ N and arbi-
trary scalars ck we have

A
N∑

k=−M

|ck|2 ≤
∫ ∞

−∞

∣∣∣∣∣
N∑

k=−M

ck φk(τ)

∣∣∣∣∣
2

dτ ≤ B
N∑

k=−M

|ck|2. (8)

Equation (8) is important for the convergence behavior of the
series (2) for signals f ∈ PW2

π . If {φk}k∈Z is a Riesz basis for
PW2

π then, by virtue of equation (8), one has

lim
N→∞

∥∥∥∥f −
N∑

k=−N

f(tk)φk

∥∥∥∥
∞

= 0 (9)

for all signals f ∈ PW2
π . We will need (9) in the proof of Theo-

rem 1.

Example 2. The Shannon sampling series is a special case of the
general sampling series that are considered in this paper. Let φ(t) =
sin(πt) with zeros tk = k, k ∈ Z. Then φ′(tk) = π cos(πtk) =
π(−1)k and

φk(t) =
φ(t)

φ′(tk)(t− tk)
=

(−1)k sin(πt)

π(t− tk)
=

sin
(
π(t− k)

)
π(t− k)

is the well known sinc-kernel of the Shannon sampling series.

2. LOCAL CONVERGENCE BEHAVIOR

A well known fact [3] about the convergence behavior of the Shan-
non sampling series with equidistant samples (1) is Brown’s theo-
rem, which states that for all f ∈ PW1

π and T > 0 fixed we have

lim
N→∞

(
max

t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣
)

= 0.

iY

−iY

t̃Nt̃−N

PN (Y )
z-plane

Fig. 1. Path PN (Y ) in the Complex Plane.

This theorem plays a fundamental role in applications, because it
establishes the uniform convergence on compact subsets of R for
a large class of signals, namely PW1

π , which is the largest space
within the scale of Paley-Wiener spaces.

In this section we prove that the uniform convergence on com-
pact subsets of R still holds if non-equidistant sampling is used. In
this sense Theorem 1 is an extension of Brown’s theorem to non-
uniform sampling.

Theorem 1. Let φ be a function of sine type, whose zeros {tk}k∈Z

are all real and ordered according to (3). Furthermore, let φk be
defined as in (7). Then we have

lim
N→∞

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0

for all T > 0 and all f ∈ PW1
π .

Proof of Theorem 1. Let T > 0 and f ∈ PW1
π be arbitrary but

fixed and

t̃n =

{
(tn+1 + tn)/2 for n ≥ 1

(tn−1 + tn)/2 for n ≤ −1.

Furthermore consider, for N ∈ N and Y > 0, the path PN (Y ) in
the complex plane that is depicted in Figure 1. For all N ∈ N and
t ∈ R we have the equality

N∑
k=−N

f(tk)φk(t) =
1

2πi

∮
PN (Y )

φ(ζ)− φ(t)

ζ − t

f(ζ)

φ(ζ)
dζ. (10)

Equation (10) can be easily seen by applying the method of residues.
Note that by the choice of PN (Y ) we have φ(ζ) �= 0 for all ζ ∈
PN (Y ). Furthermore, for all N ∈ N and t ∈ R with t̃−N < t < t̃N ,
we have

1

2πi

∮
PN (Y )

φ(ζ)− φ(t)

ζ − t

f(ζ)

φ(ζ)
dζ

= f(t)− 1

2πi

∮
PN (Y )

φ(t)

ζ − t

f(ζ)

φ(ζ)
dζ. (11)

For convenience, we introduce the abbreviation (Aφ
Nf)(t) :=∑N

k=−N f(tk)φk(t). Combining (10) and (11), it follows that

f(t)− (Aφ
Nf)(t) =

1

2πi

∮
PN (Y )

φ(t)

ζ − t

f(ζ)

φ(ζ)
dζ (12)

for all N ∈ N and t ∈ R with t̃−N < t < t̃N .

According to Lemma 1 there exist two positive constants δ and
δ such that (4) and (5) are fulfilled. Next choose YN = Nδ, N ∈ N.
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Since |K|δ < |t̃K | < (|K|+ 1)δ, |K| ∈ N, it follows that there are
two positive constants C2 and C3 such that

Y|K|/C2 < |t̃K | < Y|K|/C3 (13)

for all |K| ∈ N. Let N0 be the smallest natural number for which
min(tN0 , |t−N0 |) > T . By using the identity (12), we obtain

|f(t)− (Aφ
Nf)(t)|

≤ 1

2π

∫ YN

−YN

∣∣∣∣f(t̃N + iy)

φ(t̃N + iy)

∣∣∣∣ |φ(t)|
|t̃N + iy − t| dy

+
1

2π

∫ YN

−YN

∣∣∣∣f(t̃−N + iy)

φ(t̃−N + iy)

∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy

+
1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x + iYN )

φ(x + iYN )

∣∣∣∣ |φ(t)|
|x + iYN − t| dx

+
1

2π

∫ t̃N

t̃−N

∣∣∣∣f(x− iYN )

φ(x− iYN )

∣∣∣∣ |φ(t)|
|x− iYN − t| dx (14)

for all N ≥ N0 and t ∈ [−T, T ]. Next, we will upper bound the
right hand side of (14). It is important that this bound is independent
of N .

For all x, y ∈ R, we have |f(x + iy)| ≤ eπ|y|‖f‖PW1
π

. Fur-
thermore, since φ is a function of sine type it follows from (4) and
Lemma 2 that there exists a constant C4 such that |φ(t̃K + iy)| ≥
C4 eπ|y| for all |K| ∈ N and all y ∈ R. Consequently, for the first
term on the right hand side of (14) we have

1

2π

∫ YN

−YN

∣∣∣∣f(t̃N + iy)

φ(t̃N + iy)

∣∣∣∣ |φ(t)|
|t̃N + iy − t| dy

≤ ‖f‖PW1
π
‖φ‖∞

C4

YN

π(t̃N − T )
≤ ‖f‖PW1

π
‖φ‖∞

C4

t̃NC2

(t̃N − T )

for all N ≥ N0, where we used (13) in the last inequality. Similarly,
for the second term we obtain

1

2π

∫ YN

−YN

∣∣∣∣f(t̃−N + iy)

φ(t̃−N + iy)

∣∣∣∣ |φ(t)|
|t̃−N + iy − t| dy

≤ ‖f‖PW1
π
‖φ‖∞

C4

YN

π(|t̃−N | − T )
≤ ‖f‖PW1

π
‖φ‖∞

C4

|t̃−N |C2

(|t̃−N | − T )

for all N ≥ N0. Using essentially the same estimates as before,
the third and fourth term on the right hand side of (14) can both be
upper bounded by C5‖f‖PW1

π
for all N ≥ N0. Next, we choose

N1 ≥ N0 such that max
(

t̃N1
t̃N1−T

,
|t̃−N1 |
|t̃−N1 |−T

)
≤ 2. Note that N1

depends only on T and not on f . Consequently, there is a constant
C6 such that, for all N ≥ N1 and t ∈ [−T, T ], we have

|f(t)− (Aφ
Nf)(t)| ≤ C6‖f‖PW1

π
. (15)

Let ε > 0 be arbitrary but fixed. There exists a function fε ∈
PW2

π such that ‖f − fε‖PW1
π

< ε. As a consequence, we have

|f(t)− (Aφ
Nf)(t)|

≤ |f(t)− fε(t)− (Aφ
N (f − fε))(t)|+ |fε(t)− (Aφ

Nfε)(t)|
≤ C6‖f − fε‖PW1

π
+ |fε(t)− (Aφ

Nfε)(t)|
≤ C6ε + |fε(t)− (Aφ

Nfε)(t)| (16)

for all N ≥ N1 and t ∈ [−T, T ]. Furthermore, since fε ∈ PW2
π ,

we can use (9), i.e., the uniform convergence of the series. It fol-
lows that there exists a N2(ε) ≥ N1 such that maxt∈[−T,T ]|f(t)−
(Aφ

Nf)(t)| ≤ (C6 + 1) ε for all N ≥ N2(ε), which completes the
proof.

3. GLOBAL CONVERGENCE BEHAVIOR

3.1. Global Convergence Behavior with Oversampling

In [4] it has been shown that the Shannon sampling series with
equidistant samples is uniformly convergent on whole of R for all
f ∈ PW1

π if oversampling is used. In Theorem 2 we will see that
this result can be extended to non-equidistant sampling.

Theorem 2. Let φ be a function of sine type, whose zeros {tk}k∈Z

are all real and ordered according to (3). Furthermore, let φk be
defined as in (7). Then, for all 0 < β < 1 and all f ∈ PW1

βπ , we
have

lim
N→∞

max
t∈R

∣∣∣∣∣f(t)−
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0.

Proof. The proof of Theorem 2 is in the spirit of the proof of Theo-
rem 1, but omitted due to space constraints.

3.2. Global Convergence Behavior without Oversampling

In the sections 2 and 3.1 we gave two positive results for non-
equidistant sampling, namely the local uniform convergence of (2)
in the case where no oversampling is used, and the global uniform
convergence of (2) in the case where oversampling is used. How-
ever, so far we made no statement about the global convergence
behavior of (2) when no oversampling is used. In this section we
analyze this remaining question.

Previous investigations [5] have shown for the space PW1
π and

a large class of reconstruction processes, that a globally bounded
signal approximation is impossible if the samples are taken equidis-
tantly at Nyquist rate. By using non-equidistant sampling, an ad-
ditional degree of freedom is created, which may help to improve
the convergence behavior. However, we suspect that non-equidistant
sampling is not capable to improve the global convergence behavior.

In this section we restrict our analysis to entire functions φ with
separated real zeros {tk}k∈Z that have a representation as Fourier-
Stieltjes integral in the form

φ(t) =
1

2π

∫ π

−π

eiωt dμ(ω), (17)

where μ(ω) is a real function of bounded variation on the interval
[−π, π] and has a jump discontinuity at each endpoint. It can be
shown that all functions φ with the representation (17) satisfy part
(ii) of Definition 1 [1, p. 143], and hence the class of functions φ
that we consider here is a subclass of the functions of sine type. In
section 4.2, where we present a simple method to construct such
functions, we will see that this subclass is still very large.

For this subclass the global convergence behavior is not im-
proved by using non-equidistant sampling, because there exists a
signal f1 ∈ PW1

π such that

lim sup
N→∞

max
t∈R

∣∣∣∣∣f1(t)−
N∑

k=−N

f1(tk)φk(t)

∣∣∣∣∣ = ∞.
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4. APPLICATIONS

4.1. Stochastic Processes

In this section we analyze the mean square sense convergence
behavior of (2) for bandlimited stochastic processes X . We re-
strict our analysis to wide-sense stationary processes. Further-
more, we assume that X is mean square continuous, which im-
plies the correlation function RX has a representation RX(τ) =
1
2π

∫∞
−∞ eiωτ dμ(ω), with a positive and finite measure μ. For

details and further facts we refer to the standard literature [6]. We
additionally assume that the measure μ is absolutely continuous
with respect to the Lebesgue measure λ, which implies that there
exists a function SX ∈ L1(R) with dμ = SX dλ. SX is called
power spectral density.

Definition 3. We call a bandlimited wide-sense stationary process
X I-processes if its correlation function RX has the representation

RX(τ) =
1

2π

∫ π

−π

SX(ω) eiωτ dω, (18)

for some non-negative SX ∈ L1[−π, π].

It is well known that for all I-processes X and T > 0 we have

lim
N→∞

max
t∈[−T,T ]

E

∣∣∣∣∣X(t)−
N∑

k=−N

X(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣
2

= 0,

i.e., the variance of the reconstruction error is bounded on all com-
pact subsets of R and converges to zero for N → ∞ [7]. Using
the findings from the previous sections we can extend this result to
non-equidistant sampling, and furthermore, we are even able to make
statements about the global convergence behavior. Due to space con-
straints we omit the proofs.

Theorem 3. Let φ be a function of sine type, whose zeros {tk}k∈Z

are all real and ordered according to (3). Then, for all I-processes
X and all T > 0, we have

lim
N→∞

max
t∈[−T,T ]

E

∣∣∣∣∣X(t)−
N∑

k=−N

X(tk)φk(t)

∣∣∣∣∣
2

= 0.

Theorem 3 shows that we have a good local convergence be-
havior, however for practical applications it is important to upper
bound the mean-square approximation error over whole of R. This
is not possible in general, because there exist I-processes such that
the global mean-square approximation error increases unboundedly.

Theorem 4. Let φ be a function of sine type that has the repre-
sentation (17), and whose zeros {tk}k∈Z are all real and ordered
according to (3). Then there exists an I-process X1 such that

lim sup
N→∞

sup
t∈R

E

∣∣∣∣∣X1(t)−
N∑

k=−N

X1(tk)φk(t)

∣∣∣∣∣
2

= ∞.

The next theorem shows, similar to the deterministic case in sec-
tion 3.1, that oversampling improves the convergence behavior of (2)
for I-processes.

Theorem 5. Let φ be a function of sine type, whose zeros {tk}k∈Z

are all real and ordered according to (3). Then, for all 0 < β <
1 and all I-processes X , whose power spectral density SX(ω) is
supported in [−βπ, βπ], we have

sup
N∈N

sup
t∈R

E

∣∣∣∣∣
N∑

k=−N

X(tk)φk(t)

∣∣∣∣∣
2

< ∞.

4.2. Construction of Possible Sampling Patterns

Next, consider for an arbitrary real-valued signal g ∈ PW1
π , with

‖g‖PW1
π

< 1, the function

φg(t) = g(t)− cos(πt). (19)

Functions of this kind were analyzed for example in [8]. Since

φg(t) =
1

2π

∫ π

−π

ĝ(ω) eiωt dω − 1

2π

∫ π

−π

eiωt dμ1(ω)

=
1

2π

∫ π

−π

eiωt dμ2(ω)

with μ2(ω) = −μ1(ω) +
∫ ω

−π
ĝ(ω1) dω1, we see that φg is a func-

tion of sine type. The zeros {tk}k∈Z of φg are all real, because we
assumed that g is real-valued and ‖g‖PW1

π
≤ 1. Thus, by equation

(19) we have a method to construct arbitrarily many functions of
sine type φg and hence arbitrarily many sampling patterns {tk}k∈Z

for which the theorems in this paper are valid. The sampling points
{tk}k∈Z are nothing but the crossings of some bandlimited signal
g ∈ PW1

π , ‖g‖PW1
π
≤ 1, with the cosine function. It follows by

Theorem 2 that
N∑

k=−N

f(tk)φg,k(t), (20)

where φg,k(t) = φg(t)/(φ′g(tk)(t−tk)), is globally uniformly con-
vergent for all f ∈ PW1

βπ , 0 < β < 1, and in particular for f = g.
Furthermore, we know by section 3.2 that, in the case without over-
sampling, i.e., f ∈ PW1

π , (20) is only locally uniformly convergent
and not globally uniformly convergent in general. However, this
does not answer the question whether

∑N
k=−N g(tk)φg,k(t), i.e.,

the sampling series with matched reconstruction function, is uni-
formly convergent on whole of R for all g ∈ PW1

π . We conjecture
that even in this case the series is not globally uniformly convergent
in general.
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