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ABSTRACT

We address covariance estimation under mean-squared loss in
the Gaussian setting. Specifically, we consider shrinkage methods
which are suitable for high dimensional problems with small num-
ber of samples (large p small n). First, we improve on the Ledoit-
Wolf (LW) method by conditioning on a sufficient statistic via the
Rao-Blackwell theorem, obtaining a new estimator RBLW whose
mean-squared error dominates the LW under Gaussian model. Sec-
ond, to further reduce the estimation error, we propose an iterative
approach which approximates the clairvoyant shrinkage estimator.
Convergence of this iterative method is proven and a closed form
expression for the limit is determined, which is called the OAS esti-
mator. Both of the proposed estimators have simple expressions and
are easy to compute. Although the two methods are developed from
different approaches, their structure is identical up to specific con-
stants. The RBLW estimator provably dominates the LW method;
and numerical simulations demonstrate that the OAS estimator per-
forms even better, especially when n is much less than p.

Index Terms— Shrinkage, covariance estimation, Rao-Blackwell,
mean-squared loss

1. INTRODUCTION

Covariance matrix estimation is a fundamental problem in signal
processing and related fields. In many applications, ranging from ar-
ray processing [6] to functional genomics [7], accurate estimation of
covariance matrices is crucial. In recent years, the problem of small
sample size (n) and large matrix dimension (p × p) has become im-
portant. Examples include estimating dependencies in gene expres-
sion arrays, financial forecasting, spectroscopic imaging, fMRI data
and many others. Classical estimation methods perform poorly in
these settings and this is the main motivation for this work.

The sample covariance is most commonly used as an estimate
for the unknown covariance matrix. When it is invertible, the sam-
ple covariance coincides with the classical maximum likelihood es-
timate under a Gaussian observation model. However, while it is
an unbiased estimator, it does not minimize the mean-squared er-
ror. Indeed, Stein demonstrated that superior performance may be
obtained by shrinking the sample covariance towards a structured
estimate [1]. Since then, many shrinkage estimators have been pro-
posed that optimize different performance measures, e.g., [2, 3, 4].
The majority of these works addressed the case of invertible sample
covariance when n > p. Recently, Ledoit and Wolf (LW) proposed
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a shrinkage estimator for the case n < p which asymptotically min-
imizes the mean-squared error in the covariance [5]. The estimator
is well conditioned under small sample sizes and can be applied to
high dimensional problems. In contrast to previous work, the perfor-
mance advantages are not restricted to the Gaussian assumption and
are distribution free.

In this paper, we show that the LW estimator can be significantly
improved when the sample is Gaussian. We begin by providing a
closed form expression for the optimal clairvoyant shrinkage esti-
mator under mean-squared loss criteria. This estimator is an explicit
function of the unknown covariance matrix that can be used as an
oracle performance bound. Our first estimator is obtained by ap-
plying the classical Rao-Blackwell theorem [9] to the LW method,
and is therefore denoted by RBLW. After tedious integral compu-
tations, we can obtain a simple closed form estimator which prov-
ably dominates the LW method in terms of mean-squared loss. We
then introduce an iterative shrinkage estimator which tries to better
approximate the oracle. Beginning with an initial rough estimate,
each iteration is defined as the oracle solution where the unknown
covariance is replaced by its estimate obtained in the previous iter-
ation. Remarkably, a closed form expression can be determined for
the limit of these iterations. This limit is called the oracle approxi-
mating shrinkage (OAS) estimator.

The OAS and RBLW estimators share similar structure. In fact,
we show that this special structure is related to the locally most pow-
erful invariant test for covariance sphericity [10]. Both methods are
simple, easy to compute and perform well with finite sample size.
The RBLW estimator provably dominates the LW and our numerical
results demonstrate that for small sample sizes, the OAS estimator is
superior to both the RBLW and the LW techniques for the examples
studied.

The paper is organized as follows. Section 2 provides the prob-
lem formulation. We then develop the oracle estimator, the RBLW
estimator and the OAS estimator in Section 3. Section 4 includes
numerical simulations and we conclude the paper in Section 5.

Notation: In the following, (·)T denotes the transpose opera-
tor, tr (·) denotes the trace operator, E [·] and E [· |· ] denote the ex-
pectation and conditional expectation respectively, ‖·‖F denotes the
Frobenius norm of a matrix, and, depending on context, | · | denotes
the determinant of a matrix or the absolute value of a scalar.

2. PROBLEM FORMULATION

Let {xi}
n

i=1
be a sample of independent identical distributed (i.i.d.)

p-dimensional Gaussian vectors with zero mean and covariance Σ.
Note that we do not assume n ≥ p. Given these realizations, our
goal is to find an estimator Σ̂ ({xi}

n
i=1) which minimizes the mean-

squared error:

E

����Σ̂ ({xi}
n
i=1) − Σ

���2

F

�
. (1)
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It is impractical to minimize this loss without additional con-
straints and therefore we restrict ourselves to a specific class of es-
timators that employ shrinkage [1, 8]. The classical estimator is the
sample covariance Ŝ defined as

Ŝ =
1

n

n�
i=1

xix
T
i . (2)

On the other hand, if we assume that the elements of xi are uncorre-
lated and of equal variance, an intuitive estimate for Σ is

F̂ = ν̂I, (3)

where ν̂ = tr(Ŝ)/p is a pooled estimate of the common variance.
This structured estimate will result in reduced variance but will in-
crease the bias when the diagonal assumption is incorrect. A rea-
sonable tradeoff achieved by shrinkage of Ŝ towards F̂ results in the
following class of estimators

Σ̂ = ρ̂F̂ + (1 − ρ̂)Ŝ, (4)

parameterized by the shrinkage coefficient ρ̂. F̂ is also referred to as
the shrinkage target.

Altogether, our goal is to find a shrinkage coefficient ρ̂ as a func-
tion of the observations {xi}

n

i=1
in order to minimize the squared

loss in (1).

3. GAUSSIAN SHRINKAGE ESTIMATORS

3.1. The Oracle estimator

The oracle estimator Σ̂O is given by (4) with ρ∗ being the solution
to

min
ρ

E

����Σ̂O − Σ
���2

F

�

s.t. Σ̂O = ρF̂ + (1 − ρ) Ŝ
. (5)

The optimal ρ∗ is provided in the following theorem.

Theorem 1. Let {xi}
n
i=1 be independent p-dimensional Gaussian

vectors with zero mean and covariance Σ, the optimal solution to (5)
is

ρ∗ =
E
�
tr
��

Σ − Ŝ
��

F̂ − Ŝ
���

E

����Ŝ − F̂
���2

F

� (6)

=
(1 − 2/p) tr

	
Σ2



+ tr2 (Σ)

(n + 1 − 2/p) tr(Σ2) + (1 − n/p)tr2(Σ)
. (7)

The optimality of (6) was proven in [5] for arbitrary distribu-
tions with finite second order moments. If one imposes an additional
Gaussian assumption, (7) can be obtained from straightforward eval-
uation of the expectations in (6).

3.2. The Rao-Blackwell Ledoit-Wolf (RBLW) estimator

The starting point for our derivation of the RBLW estimator is the
LWmethod [5]. Ledoit andWolf proposed to approximate the oracle
(5) using the following consistent estimate of (6):

ρ̂LW =

n�
i=1

���xix
T
i − Ŝ

���2

F

n2

�
tr
�
Ŝ2

�
− tr2

�
Ŝ
�

/p
� . (8)

The LW estimator Σ̂LW is then defined by plugging ρ̂LW to (4). In
[5], it is also shown that the optimal ρ∗ in (6) is always within [0, 1].
To further improve the covariance estimation, they suggested to use

ρ̂∗
LW = min (ρ̂LW , 1) (9)

instead of ρ̂LW in practice.
The motivation for the RBLW is that under the Gaussian as-

sumption, a sufficient statistic for estimating Σ is the sample covari-
ance Ŝ in (2). Intuitively, the LW estimator is a function of ancillary
and unnecessary statistics and therefore can be improved. Specif-
ically, the Rao-Blackwell theorem [9] states that if g(X) is an es-
timator of a parameter θ, then the conditional expectation of g(X)
given T (X), where T is a sufficient statistic, is typically a better
estimator of θ, and is at least never worse under any convex loss
criterion. Applying this classical Rao-Blackwell result to the LW
estimator yields the following theorem.

Theorem 2. Let {xi}
n
i=1 be independent p-dimensional Gaussian

vectors with zero mean and covariance Σ, then the conditioned ex-
pectation of the LW covariance estimator is

Σ̂RBLW = E
�
Σ̂LW

���Ŝ � (10)

= ρ̂RBLW F̂ + (1 − ρ̂RBLW )Ŝ, (11)

where

ρ̂RBLW =
(n − 2)/n · tr

�
Ŝ2

�
+ tr2

�
Ŝ
�

(n + 2)
�
tr
�
Ŝ2

�
− tr2

�
Ŝ
�

/p
� . (12)

Due to the Rao-Blackwell theorem, this estimator satisfies

E

����Σ̂RBLW − Σ
���2

F

�
≤ E

����Σ̂LW − Σ
���2

F

�
. (13)

The proof of Theorem 2 is quite involved and is omitted for lack
of space. The reader is referred to [12] for the complete version.
Hereby we only list the following lemma, which is an important step
to prove Theorem 2.

Lemma 1. Let {xi}
n
i=1 be a set of p-dimensional i.i.d Gaussian

vectors with zero mean; let Ŝ be the sample covariance of {xi}
n
i=1

as defined in (2). There is

E
�
‖xi‖

4

2

�� Ŝ� =
n

n + 2

�
2tr(Ŝ2) + tr2(Ŝ)

�
, (14)

which holds for both n > p and n ≤ p.

For the similar reason as in the LW estimator, we use

ρ̂∗
RBLW = min (ρ̂RBLW , 1) (15)

instead of ρ̂RBLW in practice.

3.3. The Oracle Approximating Shrinkage (OAS) estimator

The OAS estimator is an iterative approximation for the unimple-
mentable oracle method.1 We start from any other estimator as an
initial guess of Σ and recursively refine it. The initial guess Σ̂0

could be the sample covariance, the RBLW estimate or others. We

1Note that a similar iteration scheme is also employed in [8] in the context
of linear regression.
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replace Σ in the oracle estimator by Σ̂0 yielding Σ̂1 which in turn
generates Σ̂2 through our proposed iteration. The iteration process is
continued until convergence and the limit defines the OAS estimator,
denoted as Σ̂OAS . Specifically, the proposed iterative construction
is as follows:

Σ̂j = ρ̂j F̂ + (1 − ρ̂j)Ŝ, (16)

ρ̂j+1 =
(1 − 2/p)tr

�
Σ̂j Ŝ

�
+ tr2

�
Σ̂j

�

(n + 1 − 2/p)tr
�
Σ̂j Ŝ

�
+ (1 − n/p)tr2

�
Σ̂j

� . (17)

Comparing (17) and (12), notice that in (17) tr (Σ) and tr
�
Σ2
�
are

replaced by tr
�
Σ̂j

�
and tr

�
Σ̂j Ŝ

�
, respectively. We use tr

�
Σ̂j Ŝ

�

instead of tr
�
Σ̂2

j

�
since the latter would always forces ρ̂j to con-

verge to 1 while the former leads to a more meaningful limiting
value.

Theorem 3. The iterative process defined in (16) ∼ (17) has a con-
vergent limit given by:

Σ̂OAS = ρ̂∗
OASF̂ + (1 − ρ̂∗

OAS)Ŝ, (18)

ρ̂∗
OAS = min

�
� (1 − 2/p)tr

�
Ŝ2

�
+ tr2

�
Ŝ
�

(n + 1 − 2/p)
�
tr
�
Ŝ2

�
− tr2

�
Ŝ
�

/p
� , 1

	

 ,

(19)

as long as the initial value ρ̂0 of ρ̂∗
OAS is between 0 and 1.

Proof. Substitute (16) into (17). After simplifications we obtain

ρ̂j+1 =
1 − (1 − 2/p) φ̂ · ρ̂j

1 + nφ̂ − (n + 1 − 2/p) φ̂ · ρ̂j

, (20)

where

φ̂ =
tr
�
Ŝ2

�
− tr2

�
Ŝ
�

/p

tr
�
Ŝ2

�
+ tr2

�
Ŝ
� ∈ [0, 1). (21)

Define b̂j =
�
1 − (n + 1 − 2/p) φ̂ · ρ̂j

�−1

. Equation (20) is equiv-
alent to

b̂j+1 =
nφ̂

1 − (1 − 2/p)φ̂
· b̂j +

1

1 − (1 − 2/p)φ̂
, (22)

and it is easy to see that

lim
j→∞

b̂j =

����

����

∞
nφ̂

1 − (1 − 2/p)φ̂
≥ 1

1

1 − (n + 1 − 2/p)φ̂

nφ̂

1 − (1 − 2/p)φ̂
< 1

,

(23)
therefore ρ̂j also converges as j → ∞ and ρ̂∗

OAS is given by

ρ̂∗
OAS = lim

j→∞
ρ̂j =

���

���

1

(n + 1 − 2/p) φ̂
φ̂ ≥

1

n + 1 − 2/p

1 φ̂ <
1

n + 1 − 2/p

.

(24)
Equation (19) is obtained by substituting (21) into (24). Therefore,
(16) and (17) converge to (18) and (19) as j → ∞.

From (24) one can find that ρ̂∗
OAS is naturally bounded within

[0, 1]. This is different from ρ̂∗
LW and ρ̂∗

RBLW , where the constraints
are artificially imposed.

3.4. Comparison

It is clear that the ρ̂∗
OAS shares the same structure as ρ̂∗

RBLW . In
fact, they can both be expressed as

ρ̂∗
OAS = min

�
αOAS +

βOAS

Û
, 1

�
(25)

and
ρ̂∗

RBLW = min

�
αRBLW +

βRBLW

Û
, 1

�
(26)

with Û defined as

Û =
1

p − 1

�
�p · tr

�
Ŝ2

�

tr2
�
Ŝ
� − 1

	

 , (27)

where

αOAS =
1

n + 1 − 2/p
, βOAS =

p + 1

(n + 1 − 2/p)(p − 1)
, (28)

and

αRBLW =
n − 2

n(n + 2)
, βRBLW =

(p + 1)n − 2

n(n + 2)(p − 1)
. (29)

Thus the only difference between ρ̂∗
OAS and ρ̂∗

RBLW is the def-
inition of the shrinkage coefficients. Interestingly, the statistic Û
has also been proposed for testing the sphericity of Σ, i.e., testing
whether Σ = νI . In particular, under a Gaussian assumption, Û is
the locally most powerful invariant test statistic for sphericity [10].
The smaller Û is, the more likely Σ is proportional to an identity
matrix I , and the more shrinkage occurs in Σ̂OAS and Σ̂RBLW .

4. NUMERICAL SIMULATIONS

In this section, we compare the RBLW and the OAS with the LW
method by numerical simulation, where the shrinkage coefficients
are calculated using (15), (19) and (9), respectively. The oracle es-
timator (5) is also included as a benchmark lower bound of MSE.
For all simulations, we set p = 100 and let n range from 5 to 120.
Each simulation is repeated 100 times and the averaged MSE and
the shrinkage coefficients are plotted as a function of n.

In the first example, we letΣ be the covariance matrix of a Gaus-
sian AR(1) process,

Σij = r|i−j|, (30)
where Σij denotes the entry of Σ in row i and column j. For con-
creteness we take r = 0.5. Fig. 1 and Fig. 2 show the estimated
MSE and shrinkage coefficient respectively. One sees that the OAS
performs very closely to the ideal oracle estimator. When n is small
compared with p, the OAS significantly outperforms both the RBLW
and the LW. The RBLW improves the LW slightly but this is not eas-
ily seen at the scale used for plots in Fig. 1 and Fig. 2. As expected,
all the estimators converge towards each other as n increases.

In the second example, we let Σ be the covariance matrix of
the increment process of fractional Brownian motion (FBM) which
exhibits long-range dependence. Such processes are often used to
model Internet traffic [11]. The covariance matrix is given by

Σij =
1

2

�
(|i − j| + 1)2H − 2|i − j|2H + (|i − j| − 1)2H

�
,

whereH ∈ [0.5, 1] is the Hurst parameter. H is typically chosen as a
value less than 0.9 in practical applications. Thus we set H = 0.75.
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Fig. 1. AR(1) process: Comparison of MSE with different n when
p = 100, r = 0.5.
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Fig. 2. AR(1) process: Comparison of shrinkage coefficients with
different n when p = 100, r = 0.5.

Fig. 3 and Fig. 4 show that the shrinkage estimators outperforms the
LW estimator especially at low sample sizes.

In both of the above examples, the oracle shrinkage coefficient
ρ∗ decreases in the sample number n, which makes sense since
(1− ρ∗) can be regarded as “confidence” assigned to Ŝ. Intuitively,
as more and more observations are available, one has higher confi-
dence in the sample covariance Ŝ and therefore ρ∗ decreases. This
characteristic is manifested in ρ̂∗

OAS but not in ρ̂∗
RBLW and ρ̂∗

LW .
This may partly explain why the OAS estimator outperforms the
RBLW and the LW estimators for small sample sizes.
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Fig. 3. Incremental FBM process: Comparison of MSE with differ-
ent n when p = 100, Hurst parameter H = 0.75.

5. CONCLUSION

In this paper, we have introduced two new shrinkage estimators of
covariance matrices. The RBLW estimator provably improves the
LW method via the Rao-Blackwell theorem when the observations
are multivariate Gaussian. The OAS estimator is defined by an iter-
ative construction that converges to the optimal oracle estimate. The
convergence is determined analytically and specifies the OAS esti-
mator in closed form. Simulations show that the OAS outperforms
both the RBLW and the LW. The proposed estimators have simple
explicit expressions and are easy to implement. Furthermore, they
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Fig. 4. Incremental FBM process: Comparison of shrinkage coeffi-
cients with different n when p = 100, Hurst parameter H = 0.75.

share the same structure only differing in the shrinkage coefficient.
In this paper we set the shrinkage target F̂ as the identity ma-

trix. The theory behind the proposed estimators can be extended to
other possible shrinkage targets. An interesting question for future
research is how to choose appropriate targets to further reduce the
estimation error.
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