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ABSTRACT

In this paper, we propose a Bayesian model and a Monte Carlo
Markov chain (MCMC) algorithm for reconstructing images that
consist of only few non-zero pixels. An appropriate distribution that
promotes sparsity is proposed as prior distribution for the pixel val-
ues. The hyperparameters involved in the modeling are also assigned
prior distributions, resulting in a hierarchical model. A Gibbs sam-
pler allows us to draw samples distributed according the full poste-
rior of interest. These samples are then used to approximate standard
maximum a posteriori (MAP) estimator. By conducting some sim-
ulations, we show that the proposed estimator clearly outperforms
previous estimators proposed in the literature.

Index Terms— Bayesian inference, sparse representation,
MCMC methods, MRFM.

1. INTRODUCTION

A few years ago, a new technology for molecular imagery was pro-
posed [1]. This technique, called Magnetic Resonance Force Mi-
croscopy (MRFM), is able to detect molecules with atomic-level res-
olution. Thanks to the nanometer scale of the sensed scenes, most
part of the image is empty: only a few pixels have non-zero val-
ues. This paper proposes to reconstruct such sparse images in a full
Bayesian framework when the observations are obtained from noisy
linear transformations.

Reconstruction of sparse images provided by MRFM has been
recently addressed in [2, 3]. In these works, sparsity penalized re-
construction methods based on a LAZE (Laplacian distribution and
an atom at zero) prior have been proposed. Then, the reconstruction
problem is decomposed into a deconvolution step and a denoising
step, yielding an iterative thresholding algorithm. However, in [2],
the hyperparameters inherent to the prior model are estimated in an
empirical manner. This ad hoc hyperparameter choice may lead to
incorrect results, particularly at high SNRs for which these methods
display increasingly biased estimation of the hyperparameters. We
propose here to estimate the unknown parameters and hyperparame-
ters in a fully Bayesian framework.

In this paper, a new prior composed of a mass at zero and a
single-sided exponential distribution is introduced. Coupling a stan-
dard probability density function (pdf) with an atom at zero is a
standard choice to ensure sparsity. This strategy has for instance
been used for the detection of located events required in several ap-
plications such as spike train deconvolution [4, 5]. In addition, this
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prior allows one to take into account the positivity of the pixels, con-
trary to [2]. When the noise variance is unknown, the full Bayesian
posterior can be derived from samples generated by Markov chain
Monte Carlo (MCMC) methods. As suggested above, the results of
the sparse reconstruction critically depend on the hyperparameters
chosen to define the mixture for the image prior. In the Bayesian
estimation framework, two different approaches can be considered
to estimate these hyperparameters. One approach couples MCMC
methods to an expectation-maximization (EM) algorithm [6]. The
other approach introduces a second level of hierarchy in the Bayesian
formulation by choosing non-informative prior distributions for the
hyperparameters. This fully Bayesian approach, adopted in this pa-
per, has been successfully applied to signal segmentation [7] and
semi-supervised unmixing of hyperspectral imagery [8].

The paper is organized as follows. The problem and the dif-
ferent notations are introduced in Section 2. Section 3 presents the
hierarchical Bayesian model used for sparse image reconstruction.
The Gibbs sampling strategy used to sample according to the poste-
rior of interest is detailed in Section 4. Some simulation results are
presented in Section 5. Conclusions are reported in Section 6.

2. PROBLEM STATEMENT

Let X denote the nr × nc unknown 2-dimensional image to be esti-
mated. The observed nr × nc matrix Y is the following noisy con-
volution:

Y = κ ⊗ X + N, (1)

where ⊗ stands for the 2-dimensional convolution operator, N is an
nr × nc observation noise and κ is the kernel modeling the response
of the imaging device. Typical responses of MRFM tip κ can be
found in [9] for horizontal and vertical configurations.

The images X and Y can be lexicographically vectorized yield-
ing the unknown vectorized image x ∈ RM and the observed mea-
surement vector y ∈ RM , respectively, with M = nrnc. With these
notations, Eq. (1) can be rewritten as follows:

y = Hx + n, (2)

where H is a M ×M Toeplitz matrix that describes the convolution
by the point spread function (psf) κ. In (2), n is an additive Gaussian
noise sequence distributed according to n ∼ N (

0, σ2IM

)
. Note

that the noise variance σ2 is unknown. The problem addressed in the
following sections consists of estimating x and the noise variance σ2

by ensuring sparsity and positivity constraints for the vector x given
the observations y and the transformation matrix H.
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3. HIERARCHICAL BAYESIAN MODEL

3.1. Likelihood function

The observation model defined in (2) and the Gaussian properties of
the noise sequence n yield:

f
(
y|x, σ2) =

(
1

2πσ2

)M

exp

(
−‖y − Hx‖2

2σ2

)
, (3)

where ‖·‖2
denotes the standard �2 norm: ‖x‖2 = xT x.

3.2. Parameter priors

3.2.1. Image prior

As prior distribution for xi, we propose here to use a mixture of a
mass at zero and a single-sided exponential distribution:

f (xi|w, a) = (1 − w)δ (xi) +
w

a
exp

(
−xi

a

)
1R∗

+
(xi) , (4)

where δ (·) is the Dirac function and 1E (x) is the indicator function
defined on E:

1E (x) =

{
1, if x ∈ E,
0, otherwise.

(5)

By assuming the components xi to be a priori independent (i =
1, . . . , M ), the following prior distribution is obtained for x:

f (x|w, a) =
M∏

i=1

[
(1 − w)δ (xi) +

w

a
exp

(
−xi

a

)
1R∗

+
(xi)

]
.

(6)
This prior is similar to the LAZE distribution (weighted average of a
Laplacian pdf and an atom at zero) used, for example, in [2]. How-
ever, the proposed prior in (4) also ensures the positivity of the pixel
values to be estimated.

3.2.2. Noise variance prior

Classically, a conjugate inverse-Gamma distribution with parameters
ν
2

and γ
2

is chosen as prior distribution for the noise variance:

σ2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (7)

In the following, ν will be fixed to ν = 2 and γ will be an hyper-
parameter that will be estimated. This choice significantly reduces
the complexity of the Bayesian algorithm. It has been suggested in
many works including [7, 8].

3.3. Hyperparameter priors

The hyperparameter vector associated with the previous prior dis-
tributions is Φ = {a, γ, w}. Obviously, the accurateness of the
proposed Bayesian model for image reconstruction depends on the
values of these hyperparameters. We propose to estimate these hy-
perparameters from the data using a hierarchical Bayesian model.
This model requires to choose prior distributions, detailed below, for
the hyperparameters.

3.3.1. Hyperparameter a

A conjugate inverse-Gamma distribution is assumed for hyperpa-
rameter a: a|α ∼ IG (α0, α1) , (8)

with α = [α0, α1]
T

. The fixed hyperparameters α0 and α1 have
been chosen to obtain a vague prior, i.e. α0 = α1 = 10−10.

3.3.2. Hyperparameter γ

Non informative Jeffrey’s prior is chosen as prior distribution for
hyperparameter γ:

f (γ) ∝ 1

γ
1R+ (γ) . (9)

3.3.3. Hyperparameter w

A conjugate beta distribution with fixed hyperparameters β1 and β0

is chosen as prior distribution for w:

w|β ∼ B (β1, β0) , (10)

with β = [β0, β1]
T

and where B (a, b) denotes the Beta distribution
with parameters (a, b). By choosing β0 = β1 = 1, the Beta distri-
bution reduces to the uniform distribution on [0, 1].

Assuming that the individual hyperparameters are independent the
full hyperparameter prior distribution for Φ can be expressed as:

f (Φ|α, β) = f (a) f (γ) f (w) . (11)

3.4. Posterior distribution

The posterior distribution of {θ,Φ} can be computed as follows:

f (θ,Φ|y, α, β) ∝ f (y|θ) f (θ|Φ) f (Φ|α, β) , (12)

with

f (θ|Φ) = f (x|a, w) f
(
σ2|γ) , (13)

where f (y|θ) and f (Φ|α, β) have been defined in (3) and (11).
This hierarchical structure allows one to integrate out the parameter
σ2 and the hyperparameter vector Φ in the full posterior distribu-
tion (12), yielding:

f (x|y, α, β) ∝ B (β1 + n1, β0 + n0)

‖y − Hx‖M

Γ (n1 + α0)(‖x‖1 + α1

)n1+α0
.

(14)

with B (β1, β0) = Γ (β1) Γ (β0)
/
Γ (β1 + β0), where Γ(·) denotes

the Gamma function, and n1 = ‖x‖0 and n0 = M − ‖x‖0.

The next section presents an appropriate Gibbs sampling strategy
that allows ones to generate samples distributed according to the pos-
terior distribution f (x|y, α, β).

4. GIBBS SAMPLER

The principles of the Gibbs sampler can be found in many textbooks,
including [10].

4.1. Generation of samples according to f
(
x
∣∣σ2,y, α, β

)
To generate samples distributed according to f

(
x
∣∣σ2,y, α, β

)
, it

is very convenient to sample according to f
(
x, w, a

∣∣σ2,y, α, β
)
.

Thus, generating samples according to f
(
x
∣∣σ2,y, α, β

)
can be

achieved in the 3-step procedure detailed in paragraphs 4.1.1, 4.1.2
and 4.1.3.

4.1.1. Generation of samples according to f (w |x, β )

Straightforward computations lead to:

f (w |x, β ) ∝ (1 − w)n0+β0−1wn1+β1−1, (15)

where n0 and n1 have been defined in the previous section. There-
fore, generation of samples according to f (w |x, β ) is achieved as
follows: w |x, β ∼ B (β1 + n1, β0 + n0) . (16)

4.1.2. Generation of samples according to f (a |x, α )

Looking at the joint posterior distribution (12), we obtain:

a |x, α ∼ IG (‖x‖0 + α0, ‖x‖1 + α1

)
. (17)
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Table 1. Parameters used to compute the MRFM psf.

Parameter
Value

Description Name

Amplitude of external magnetic field Bext 9.6 × 103 G

Value of Bmag in the resonant slice Bres 1.0 × 104 G

Radius of tip R0 4.0 nm

Distance from tip to sample d 7.6 nm

Cantilever tip moment m 4.6 × 105 emu

Peak cantilever oscillation oscillation xpk 0.8 nm

Maximum magnetic field gradient Gmax 125

4.1.3. Generation of samples according to f
(
x
∣∣w, a, σ2,y

)
The posterior distribution of each component xi (i = 1, . . . , M )
conditionally upon the others can be easily derived:

f
(
xi|w, a, σ2,x−i,y

) ∝ (1 − wi)δ (xi) + wiφ+

(
xi|μi, η

2
i

)
,

(18)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei = y −
∑
k �=i

xkhi,

η2
i =

σ2

‖hi‖2 ,

μi = η2
i

(
hT

i ei

σ2
− 1

a

)
,

ui =
w

a
C

(
μi, η

2
i

)
exp

(
μ2

i

2η2
i

)
,

wi =
ui

ui + (1 − w)
,

(19)

where x−i stands for the vector x whose ith component has been
removed and hi denotes the ith column of H. In (18), φ+

(·, m, s2
)

stands for the pdf of the truncated Gaussian distribution defined on
R∗

+ with hidden parameters equal to the mean m and the variance s2.
Therefore, from (18), xi|w, a, σ2,x−i,y is a Bernoulli-truncated
Gaussian variable with parameter

(
wi, μi, η

2
i

)
. Generation of sam-

ples distributed according to the Bernoulli-truncated Gaussian can
be easily performed by using a Bernoulli auxiliary variable and the
simulation scheme studied in [11].

4.2. Generation of samples according to f
(
σ2 |x,y

)
The posterior distribution of σ2 |x,y is

σ2 |x,y ∼ IG
(

M

2
,
‖y − Hx‖2

2

)
. (20)

according to which it is easy to sample.

5. SIMULATIONS

This section considers a 32 × 32 synthetic image simulated us-
ing the prior in (4) with parameter a = 1 and w = 0.02 (see
Fig. 1 (right)). In this figure and in the following ones, white pixels
stand for zero values. Following the MRFM tip model in [9], a
10 × 10 2-dimensional convolution kernel, represented in Fig. 1
(left), has been generated using the physical parameters given in
Table 1 (see also [3] for more details). The corresponding matrix
H is of size 1024 × 1024. The observed measurements y, depicted

Fig. 1. Left: Psf of the MRFM tip. Right: unknown sparse image to
be estimated.

in Fig. 1 (right) are of size M = 1024. These observations are
corrupted by an additive Gaussian noise with two different variances
σ2 = 2.0 × 10−1 and σ2 = 3.1 × 10−3, corresponding to signal-
to-noise ratios SNR = 2dB and SNR = 20dB respectively. The
observations are processed by the proposed algorithm that consists
of NMC = 2000 iterations of the Gibbs sampler with Nbi = 300
burn-in iterations. Then the MAP estimator of the unknown image
x is computed by keeping the generated sample that maximizes the
posterior distribution in (14):

x̂MAP ≈ argmax
x∈X

f (x|y) , (21)

with X =
{
x(t), t = 1, . . . , NMC

}
. These estimates are depicted in

Fig. 2 for the two levels of noise considered. The estimated images
are very similar to the actual image, even with low SNR.

Fig. 2. Top, left (resp. right): noisy observations for SNR = 2dB
(resp. 20dB). Bottom, left (resp. right): reconstructed image for
SNR = 2dB (resp. 20dB).

As the proposed algorithm generates samples distributed according
to the posterior distribution in (14), these samples can be used to
compute the posterior distributions of each parameter. As examples,
the posterior distributions of the hyperparameter w and the noise
variance σ2, are shown in figures 3 and 4. These estimated distri-
butions are in good agreement with the actual values of these pa-
rameters1 for the two SNR levels. The posterior distributions of two

1Similar results have been obtained for the hyperparameter a. They are
omitted for brevity.
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different pixels are finally depicted in Fig. 5. These posteriors are
also in agreement with the actual values of these pixels that are rep-
resented in dotted red line in these figures.

Fig. 3. Posterior distribution of hyperparameter w (left: SNR =
2dB, right: SNR = 20dB).

The results provided by the proposed method have been compared
with those provided by methods that also estimate the hyperparam-
eters. Firstly, the techniques proposed in [2, 3] are based on EM
algorithms that perform empirical estimation of the unknown hyper-
parameters. Therein, two empirical Bayesian estimators, denoted
Emp-MAP-Lap and Emp-MAP-LAZE, based on a Laplacian or a
LAZE prior respectively, are studied. Here we compare the estima-
tors of [2,3] to the proposed MAP estimator under the model and the
algorithm presented in Sections 3 and 4. As in [2,3], the comparison
is conducted with respect to different measures of performance. First
let e = x−x̂ denote the reconstruction error when x̂ is the estimator
of the image x to be recovered. To measure the performance of the
sparse reconstruction, four criteria have been used: the �0, �1 and
�2-norms of e to measure the accuracy of the reconstruction and the
�0-norm of the estimator x̂ to measure its sparsity. Table 2 gathers
the four performance measures for the four different studied algo-
rithms. It appears that the proposed Bayesian MAP estimator yiels
better performance criteria than the others estimators.

Table 2. Reconstruction performances for different algorithms.

Method
Error criterion

‖e‖0 ‖e‖1 ‖e‖2 ‖x̂‖0

SNR = 2dB

Landweber 1024 372.96 14.50 1024

Emp-MAP-Lap 13 15.70 4.87 0

Emp-MAP-LAZE 48 10.63 1.80 46

Proposed MAP 13 1.65 0.57 11

SNR = 20dB

Landweber 1024 178.51 7.01 1024

Emp-MAP-Lap 29 1.62 0.42 27

Emp-MAP-LAZE 54 2.04 0.35 53

Proposed MAP 14 0.34 0.13 13

6. CONCLUSIONS

We presented a novel Bayesian estimation algorithm to reconstruct
sparse images provided by MRFM. A mixture of a one-sided ex-
ponential distribution and a mass at zero was chosen as prior dis-
tribution for the pixel values to ensure their non-negativity and the
sparsity of the estimated image. The hyperparameters involved in
this mixture were directly estimated from the data via a hierarchical

Fig. 4. Posterior distribution of hyperparameter σ2 (left: SNR =
2dB, right: SNR = 20dB).

Fig. 5. Posteriors distributions of the non-zero values of x for
SNR = 20dB, (actual values are depicted with dotted red lines).

model, yielding a fully Bayesian approach. A Gibbs sampling strat-
egy was proposed approximate the MAP estimate of the unknown
image. The derived Bayesian estimate provided very encouraging
results when compared to other previously proposed estimators.
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