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ABSTRACT

The Map Seeking Circuit (MSC) has been suggested to address the
inverse problem of transformation discovery as found in signal pro-
cessing, vision, inverse kinematics and many other natural tasks. Ac-
cording to this idea, a parallel search in the transformation space of a
high dimensional problem can be decomposed into parts efficiently
using the ordering property of superpositions. Deterministic formu-
lations of the circuit have been suggested. Here, we provide a proba-
bilistic interpretation of the architecture whereby the superpositions
of the circuit are seen as a series of marginalisations over parame-
ters of the transform. Based on this, we interpret the weights of the
MSC as importance weights. The latter suggests the incorporation
of Monte-Carlo approaches in the MSC, providing improved resolu-
tion of parameter estimates within resource constrained implementa-
tions. As a final contribution, we model mixed serial/parallel search
strategies of biological vision to reduce the problem of collusions, a
common problem in the standard MSC approach.

Index Terms— map seeking circuit, pattern detection, transfor-
mation estimation, marginalisation

1. INTRODUCTION

The goal of a Map Seeking Circuit (MSC) is to find the best se-
quence of transformations that matches an input pattern to one or
more stored templates [1]. The MSC architecture, which decouples
the search of transformation parameters from each other, is a plau-
sible mechanism to explain the speed of cortical networks. From a
computational perspective, the superposition of hypothetical trans-
formations, combining multiple transformations of the same type
(e.g. translation, rotation, scaling), allows the effect of transforma-
tion types to be isolated from each other, and to evaluate error func-
tionals over single transformation parameters. The generality of the
method offers solutions to a wide range of problems including visual,
other perceptual, cognitive, and motor applications. The underlying
principles of the circuit are still being analysed. Recent work has
described the architecture and its computational processes as a dis-
crete dynamical system [2], and in terms of difference equations [3].
Our first contribution is to interpret the MSC in a more mainstream
statistical framework; accordingly we proceed as follows: first, we
formulate the MSC in a probabilistic framework, whereby the es-
timation of the transformation sequence is treated as a problem of
estimating a joint distribution of transformation parameters. This
provides probabilistic interpretations on the superposition of hypoth-
esised transformations, a key feature of the standard MSC, and an
understanding of the limitations of the components and operation of
the standard MSC. Our second contribution stems directly from this:
the formulation of the MSC in a probabilistic framework suggests
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the introduction of sequential importance resampling processes in
adaptively exploring the transformation parameter spaces. This po-
tentially achieves higher precision in estimates of the transformation
parameters within roughly the same computational resources as the
original MSC in our Monte Carlo Map Seeking Circuit (MC-MSC)
scheme. Our third contribution addresses the problems introduced
by superimpositions occurring in the translation layer of a cluttered
scene; here, we turn to the biological strategy suggested by employ-
ing fixational eye movements and visual attention: essentially a mix-
ture of sequential and parallel search strategies of biological visual
systems [4]. We achieve this by introducing a queuing system into
the MC-MSC architecture at the translational level; this dramatically
reduces the effects of collusions at this level of the system.

2. MARGINALISATION TO PARTITION HIGH
DIMENSIONAL SEARCH SPACES

Consider the problem of finding the best sequence of a given set of
transformations that matches an input signal, I , to the stored tem-
plate, M , through a series of comparisons between the transformed
signals, templates and superpositions of those. Let fi, i ∈ N de-
note the ith transformation parameter in the sequence. The correct
sequence, (f1, ..., fL) can be formulated in the Bayesian framework
as

P (f1, ..., fL|I, M) =
P (I, M |f1, ..., fL)P (f1, ..., fL)

P (I, M)
(1)

where assuming a multivariate conditional distribution (or any ex-
ponential form) for the likelihood, P (I, M |f1, ..., fL), the search
for the maximum location can be carried out with the log-likelihood
instead. This model becomes computationally intractable for mod-
erate to large numbers of parameters owing to the large number of
combinations to be taken into account, leading to the problem of
combinatorial explosion. Furthermore, estimating the likelihood for
each combination involves transforming images prior to the compar-
ison, adding to the computational load. The problem of estimating
high dimensional joint likelihood density functions can be addressed
either by assuming independence of the variables or by marginali-
sation. In this case, the independence assumption is not plausible
because each transformation in the sequence affects the final image
in a complex manner. Marginalisation captures the correlation be-
tween variables and could help to reduce the dimensionality of the
search space. This equates to splitting the joint likelihood into a
set of marginalised probability density functions each defined over
only one variable fi. To simplify the search, one would ideally
marginalise over all parameters in the sequence except for one at
a time. For L different variables, L − 1 marginalisations would be
required. So, the collapsing of the search space into 1D over fi can
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be summarised by the following:

P (I, M |fi) =

∫
...

∫
P (I, M |f1, ..., fL)P (f0)...

P (fi−1)P (fi+1)...P (fL)df1...dfi−1dfi+1...dfL (2)

which is usually computed by summing the conditional probabili-
ties over all possible values of the transformation parameters. We
suggest that the MSC of Arathorn may be interpreted as a series
of marginalisations over components of a series of transformations.
For example, to average out the effect of the first and last transfor-

Fig. 1. An intermediate layer of the MSC

mations, we can perform weighted superpositions of the transformed
signal and the template respectively. In the generic case, any parame-
ter can either be averaged out by removing the previous or following
transformations from the signal and the template respectively, de-
pending on how close they are in the sequence [1]. Thus, the MSC
uses the superposition of the marginalised transformations, Ii−1, in-
stead of the signal, I , and the superpositions of the backwards trans-
formations, Mi+1, instead of the template, M (A typical layer for
the search on ith parameter in the sequence is seen in Fig.1). The
posterior density function for one variable is then defined as

P (fi|Ii−1, Mi+1) =
P (Ii−1, Mi+1|fi)P (fi)

P (Ii−1, Mi+1)
(3)

where P (fi|Ii−1, Mi+1) = P (fi|f1, ..., fi−1, fi+1, ..., fL, I, M)
is implicit and the likelihood is computed by

P (Ii−1, Mi+1|fi) =

∫
P (Ii−1, Mi+1|fi−1, fi)P (fi−1)dfi−1

(4)
Let Ni be the number of different transformations for the ith param-
eter in the sequence. The number of operations needed to search the
whole space would reduce from

∏L
i Ni to

∑L
i Ni with this process.

Although the search over marginalised spaces is still in nature com-
binatorial, the number of computations is reduced considerably giv-
ing an opportunity to attack many transformation estimation prob-
lems.

3. MC-MSC DESCRIPTION FOR TWO LAYERS

A Monte Carlo approach allows dynamical evaluation of likelihood
distributions in time [5]. The search for the maximum in a highly
complex likelihood function is in this case performed through a set
of marginal likelihoods instead of the joint distribution in an iter-
ative process that we call Monte Carlo Map Seeking Circuit (MC-
MSC). For relative simplicity, we illustrate the process of the MC-
MSC for a two layer case in which rotation and scaling are to be

infered between an image, I , and a stored template, M (In prac-
tice, we also have layers for translation). We start by initialising
the parameters uniformly over the search domain, s(0) ∼ U(a, b),

θ(0) ∼ U [0, 2π), and the scaling parameters having probabilities

inversely proportional to themselves, p(s(0)) = 1/s(0) (note that

P (θ(0)) is not used in the backwards path in two layer case). For
iteration k (k ≥ 1), the backward path is run first to obtain hypothe-
ses of what the template will look like through all possible transfor-
mations considered at each layer. Only the second layer hypothesis
is needed for a two layer circuit. Thus, samples of inversely scaled

templates, M
(k−1)
s = T−1

s {M}(s(k−1)) are drawn as M
(k−1)
s ∼

p(M
(k−1)
s |s(k−1))p(s(k−1)) and p(Ms|s) = N(Ts{M}, σ2

M ; H).

The expected value of M
(k−1)
s is obtained by marginalising over the

scaling parameter, s(k−1) as

E(M (k−1)
s ) = M

(k−1)
s =

∫
M (k−1)

s p(s(k−1))ds(k−1)
(5)

The new distributions based on the backward information are cho-
sen as s(k) ∼ N (s(k−1), σ2

s) , p(s(k)) = 1/s(k), and θ(k) ∼
N (θ(k−1), σ2

θ). Then, we draw samples from the rotated input sig-

nals, I
(k)
θ = Tθ{I}(θ(k)) as I

(k)
θ ∼ p(I

(k)
θ |θ(k))p(θ(k)) p(Iθ|θ) =

N (Tθ{I}, σ2
I ; H). The likelihood of each of these model hypothesis

is computed by comparison with the imagery hypothesis at that layer

(fed as an input from the next layer in the architecture), M
(k−1)
s , as

follows

p(I
(k)
θ |θ(k), M

(k−1)
s , Σθs; H) =

1

(2π)N/2|Σθs|(1/2)
×

exp (−1

2
(I

(k)
θ − M

(k−1)
s )T Σ−1

θs (I
(k)
θ − M

(k−1)
s )) (6)

and the inference on θ at this layer is obtained by Bayes’ theorem as

p(θ(k)|I(k)
θ , M

(k−1)
s , Σ

(k)
θs ; H) =

p(I
(k)
θ |θ(k), M

(k−1)
s , Σ

(k)
θs ; H)p(θ(k))∫

p(I
(k)
θ |θ(k), M

(k−1)
s , Σ

(k)
θs ; H)p(θ(k))dθ(k)

(7)

The mean Iθ , according to the weighting distribution, p(θ(k)) is
again computed as

E(I
(k)
θ ) = I

(k)
θ =

∫
I
(k)
θ p(θ(k))dθ (8)

In the next layer, the scaled samples of the input I
(k)
s = Ts{Iθ}(s(k))

are drawn from I
(k)
s ∼ p(I

(k)
s |s(k), I

(k)
θ )p(s(k)) and p(Is|s, I(k)

θ ) =
N (Ts{Iθ}, σ2

I ; H) then the likelihood of each of these samples is
again obtained by a comparison between these samples and the
template directly

p(I(k)
s |M, Σsθ; H) =

1

(2π)N/2|Σsθ|(1/2)
×

exp (−1

2
(I(k)

s − M)T Σ−1
sθ (I(k)

s − M)) (9)

These likelihoods are used to construct an estimate of the distribution
of the scaling parameter, s(k)

p(s(k)|I(k)
s , M, Σ

(k)
sθ ; H) =

p(I
(k)
s |s(k), M, Σ

(k)
sθ ; H)p(s(k))∫

p(I
(k)
s |s(k), M, Σ

(k)
sθ ; H)p(s(k))ds(k)

(10)

The process is repeated until the parameter estimations satisfy some
stopping criterion.
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4. IMPLEMENTATION

For a given input image I (Fig. 2a) and a template M (Fig. 2b), a
preprocessing step is first applied to obtain a sparse representation.
We have used a gradient magnitude representation in our experi-
ments and represent probability distributions by a set of samples
with t(k) being the translation samples (in 2D), θ(k) the rotation
samples and s(k) the scaling layer samples. The probabilities are

taken as the weightings, w
(k)
θ and w

(k)
s , at the kth iteration of the

circuit. The backwards path is run first to obtain imagery hypotheses
at each layer. In the three layer case this means running only the
backward path of the second and the third layers, which are for rota-
tion and scaling respectively. Therefore the imagery hypotheses for
the first layer (for translation in the experiments) are not initialised
at this stage of the circuit. Scaling samples s(0) are placed at fixed

intervals in range [a, b] and the weights are set as w
(0)
s = 1/s(0)

(and normalised) to remove the bias towards the centre in the super-
imposition due to a higher number of pixels concentrated around the
centre corresponding to smaller scales. Similarly, rotation samples
θ(0) are initialised at fixed intervals in the range (0, 2π] and the
weights are set to be uniform, summing to 1. Translation samples
t(0) are again initialised at regular intervals in the two dimensional
image space. Then, for each kth iteration, inversely scaled samples
(illustrated in Fig. 2(c-e)) of the template, Ms, are drawn according

to their prior weights w
(k−1)
s , and the backward observation (mean)

is computed as Ms =
∑

j w
(k−1)
sj Ms. This is then fed into the

inverse rotation layer and after drawing inversely rotated samples of
scaling layer observation, i.e. Mθ’s, the backward observation for

the rotation layer is computed as Mθ =
∑

j w
(k−1)
θj

Mθ . Several

observations for different iterations are shown in Fig. 3. For the first

Fig. 2. Input image (a) and the template (b) (template in the ex-
periment is taken form the input image, rotated by 130 degrees and
scaled by a factor of 1.2). Several scaling hypothesises (c-e) and
rotation hypothesises (f-h).

iteration the sample sets stay the same, so for k = 1, t(k) = t(k−1),
θ(k) = θ(k−1) and s(k) = s(k−1) but for any further iterations an
importance sampling scheme is used to obtain a new set of samples
as described below:
Resampling: For an iteration number k > 1 and transformation
parameter x having N (k−1) values in the previous iteration as

x(k−1) = {x(k−1)
1 , ..., x

(k−1)

N(k−1)} (for 2D translation layer samples

x(k−1)
i = (x

(k−1)
ix , x

(k−1)
iy ), ∀i ≤ N (k−1)) with weights w(k−1) =

{w(k−1)
1 , ..., w

(k−1)

N(k−1)} where
∑N(k−1)

j=1 wj = 1 and N (k) new sam-

ples to be chosen for the kth iteration are x(k) = {x(k)
1 , ..., x

(k)

N(k)}.

Fig. 3. Forward/backward path outputs for a three layer MC-MSC
for translation, rotation and scaling (colums) from different itera-
tions (rows) which uses the input image and template given in Fig 2

The Cumulative Function for the {k − 1}th iteration is constructed

as F (x) =
∑

{j:xj≤x} pj ∀j : j ∈ {1, ..., N (k)}, cj ∼ U(0, 1)

and i∗ = max{i : F (xi) < cj} then x
(k)
j ∼ N (x

(k−1)
i∗ , σ2

x) or

x
(k)
j = x

(k−1)
i∗ + N (0, σ2

x).

After the new set of samples t(k), θ(k) and s(k) is chosen, the
forward path is run to compare each of the hypotheses with the

templates at each layer and to obtain new weights w
(k)
t , w

(k)
θ and

w
(k)
s . This proceeds as follows: samples of translated input im-

age (patches), It, are drawn according to t(k) and the weights w
(k)
t

are computed using a likelihood model similar to Eqn.(7). Then the
forward observation (mean) in the translation layer is computed as

It =
∑

j w
(k)
tj

It and this is given as the input to the next layer which

is for rotation. Samples of rotated input, Iθ’s, are then drawn ac-

cording to θ(k) with the weights w
(k)
θ are computed by Eqn.(7), and

the forward observation (mean) in the rotation layer is computed as

Iθ =
∑

j w
(k)
θj

Iθ . Similar to above, we draw samples of scaled Iθ

(= Is’s) according to s(k) and compute scaling weights, w
(k)
s by

Eqn.(10). We terminate the search when maximum number of it-
erations is reached. In the illustrative example given in Figs.2-4,
translation layer samples are initially placed uniformly with 5 pixel
intervals, rotation samples at 5o intervals in the range of (0, 2π] and
scaling samples at a step size of 0.01 in the range of [0.8,2]. The
forward observations for translation and rotation layer, and the back-
wards observations for scaling and rotation layers for iterations 1, 5
and 30 are seen in Fig. 3 (again note that the forward scaling and
the backward translation layers are not shown as they are not used
in the three layer circuit). The probability distributions as repre-
sented by the samples are given in Fig. 4. A 2D search space for
the translation layer necessitates the probability distribution to be
represented with a huge number of samples. As the system refines
the weights and starts to converge, the complexity of the marginal
likelihoods reduces. Thus, we adopt a data-driven mechanism to
set the number of parameters, N (k), in order to reduce computation
and sparsify the superpositions. Fig.4 shows the effect of this sam-
ple reduction mechanism through the iterations. Another point that
should be highlighted in this example is that in the case of multiple
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Fig. 4. Updated weights for a three layer MC-MSC of translation,
rotation scaling (columns) across different iterations (rows)

hypothesis, Monte Carlo scheme allows peaks to be kept longer al-
lowing recovery in the case, that the system starts to diverge from
the true solution owing to collusions, i.e. interference patterns that
introduce illusory peaks in the marginal likelihoods. In cluttered
scenes, even the gradient magnitude form of the input is not sparse
enough for the marginalisation in order to address this. Arathorn
uses a large number of orientation channels to reduce this problem
[6]. Our strategy is as follows: at earlier iterations (k = 1 ∼ 4 in the
experiments) we first detect the main peaks in the spatial likelihood
functions. We then isolate and queue each peak into the three layer
MC-MSC. A final comparison yields the best combination of refined
parameters. In our experiments, for the case of detecting 9 objects
in a cluttered scene (Fig.5), 15 different combinations of rotations
and scalings are applied to the templates making up a total number
of 135 different cases. Parameters were chosen randomly in a range
of [0, 360) degrees for rotation and a range of [0.8, 1.7] for scaling.
Our system achieved 79% for the correct localisation whereas stan-
dard MSC (on gradient images) suffered severely from collusions
and achieved only 21%. For MC-MSC mechanism absolute mean
errors for the rotation were 2.02 degrees for rotation and 0.06. For
the correct detections, the final similarity of transformed templates
to the identified locations in the input scene is computed by a nor-
malised cross correlation which ranged from 0.85 to 0.95. If the
same number of samples had been employed on a discrete grid, the
best precision of the MSC would be constrained to the grid locations
at 5 pixels translation, 5o rotation and 0.05 scale increments.

Fig. 5. Input image for ‘queuing’ in MC-MSC experiments

5. CONCLUSIONS

Pattern recognition through a series of marginalisations is an attrac-
tive idea as real imagery often requires a high dimensional space to
be explored. Although a practical implementation has not been pro-
posed until recently [1], the concept of Bayesian marginalisation for
image transformations, which allows the incorporation of parallel
search (a behaviour observed in the human visual system) to many
computer vision problems. Using a Monte Carlo sampling approach
in such a system increases the adaptability and efficiency leading to
more accurate approximation of transformation values by a smaller
number of computations.

Marginalisation in the form of superpositions aids the search
for multiple variables by reducing the dimensionality of the search
space, for the problems otherwise requiring a fully sequential search.
However as the complexity of information included in one marginal-
isation increases, the MSC can fail to converge to the global maxi-
mum. Motivated by biological vision, an ideal trade-off is obtained
when this parallel search mechanism is supported with a few se-
quential steps increasing the complexity by a small amount. This is
referred as ‘queuing’ in this paper. Queuing incorporates all the ad-
vantages of the marginalisation and increases the efficiency by parti-
tioning the information in the marginalisations guided directly by the
system. Future work includes studying the conditions under which
marginalisation through image superimposition works, i.e. where
the sparsity assumptions break down.
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