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ABSTRACT

Population Monte Carlo is a statistical method that is used for
generation of samples approximately from a target distribution.
The method is iterative in nature and is based on the principle of
importance sampling. In this paper, we show that in problems
where some of the parameters are conditionally linear on the
remaining parameters, we can improve the computational efficiency
of population Monte Carlo by generating samples of the nonlinear
parameters only and marginalizing the linear parameters. We
demonstrate the marginalized population Monte Carlo on the
problem of frequency estimation of closely spaced sinusoids.

Index Terms— Population Monte Carlo, parameter estimation,
marginalization.

1. INTRODUCTION

Monte Carlo–based signal processing has gained much steam
recently. With the advancement of Markov chain Monte Carlo
(MCMC) sampling [1] and particle filtering, sets of very important
classes of problems can be addressed with new tools, including
problems that require batch processing and ones that are sequential
in nature.

MCMC methods are used for generating samples from
probability distributions based on constructing Markov chains whose
stationary distributions are the target distributions. An alternative
approach to sampling from target distributions is the population
Monte Carlo (PMC) method, which is also iterative in nature but,
unlike the MCMC, does not have burn-in period in which the
generated samples cannot be used. The method is based on the
principle of importance sampling, which suggests that one should
generate samples more frequently from regions of the support that
are more important than other regions (in other words, regions with
greater probability masses associated to them) [2].

The PMC method was described in [3] where it was presented
together with other sample (particle)–based methods. Particle
filtering is composed of the same ingredients as PMC, and in [4], an
algorithm, in spirit like PMC, was proposed for estimation of static
parameters by particle filtering. In [5], a PMC algorithm based on
adaptive importance sampling for static models was proposed. PMC
was used in [6] for ion channel restoration. A new PMC algorithm
that reduces the asymptotic variance for a function of interest was
proposed in [7]. In [8], it was shown that PMC algorithms can
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be progressively adapted to a target distribution with a diminishing
Kullback divergence.

In this paper, we address the use of Rao-Blackwellization (RB)
and the PMCmethod [9]. Previous work on this subject can be found
in [10], where RB was applied to marginalization of missing data
through numerical integration. In our work, we consider the general
problem of having conditionally linear parameters, assume certain
structure of distributions that allow for analytical integration and
apply sampling only for the nonlinear parameters of the model. We
argue that with this approach one can construct new proposals much
more easily and use the generated samples much more efficiently.

For demonstration of the proposed approach, we work on
the classical problem of frequency estimation of closely spaced
sinusoids. This is a well studied problem, which perfectly fits the
aims of our study. Namely, the nonlinear parameters of the model
are the frequencies of the sinusoids and the linear parameters are the
amplitudes of the sinusoids.

The paper is organized as follows. First we formulate the
problem in Section 2. In Section 3, we explain the proposed
method and discuss some of its advantages and disadvantages. We
demonstrate the implementation of the marginalized PMC to the
problem of frequency estimation of sinusoids in Section 4. The
simulation results that demonstrate the method’s performance are
presented in Section 5. The paper is concluded with final thoughts
given in Section 6.

2. PROBLEM FORMULATION

The problem we address can be stated as follows: we have a dy × 1
vector of observations y, which is modeled according to

y = h(xn) + A(xn) xl + w (1)

where x is a dx × 1 vector of unknown parameters. This vector is
composed of linear parameters xl of dimension dxl

and nonlinear
parameters xn of dimension dxn , where dx = dxn + dxl

. The
symbol h(·) denotes a nonlinear function of the parameters xn;
A(xn) is a dy × dxl

matrix whose entries are functions of the
nonlinear parameters; and w is a noise vector with a known
probability distribution. Let the prior density of the unknown
parameters be given by p(xn, xl) and the distribution of the noise
by p(w). The objective is to estimate x from the observation vector
y based on the made assumptions. In particular, the objective is to
apply the PMC method for estimation.

3. PROPOSEDMETHOD

PMC is an adaptive importance sampling procedure where the
importance function changes with every iteration with the aim to
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produce samples that better represent the target distribution. The
advantage of PMC over MCMC methods [11] is that it can be
stopped at any time. In the next subsection, we provide a review
of the method.

3.1. Brief review of PMC

The underlying principle used in PMC is importance sampling. In
the past, importance sampling has primarily been used for numerical
integration and more recently in particle filtering [12], [13]. In
signal processing, a standard problem is the estimation of unknowns,
and to that end we often use point estimates of the unknowns or
provide their posterior distributions. For the purpose of a simplified
presentation, let the unknown be a scalar denoted by x. One standard
point estimator of it is the minimum mean-square estimate of x

defined by

ηx =

∫
xp(x|y)dx (2)

where y is the vector of observations and p(x|y) is the posterior of
x. If we can draw samples from p(x|y), i.e.,

x
(m) ∼ p(x|y), m = 1, 2, · · · , M (3)

we can compute the integral (2) according to classical Monte Carlo
integration by

η̂x �
1

M

M∑
m=1

x
(m) (4)

where M is the total number of independently drawn samples. By
the strong law of large numbers the estimate will converge to the true
mean of the posterior. In addition, forM large, one can write

η̂x − ηx

ση̂x

∼ N (0, 1) (5)

where

ση̂x =

√√√√ 1

M

M∑
m=1

(x(m) − η̂x)2.

Often, one cannot draw samples from the posterior p(x|y).
Instead, one can use for drawing x(m) another probability
distribution q(x), called an importance function, and proceed as
follows:

ηx =

∫
xp(x|y)dx

=

∫
x

p(x|y)

q(x)
q(x)dx

�
1

M

M∑
m=1

x(m)p(x(m)|y)

q(x(m))
. (6)

When some conditions about q(x) are satisfied, it can be shown
that by using the strong law of large numbers, this estimate, too,
converges to the true value.

The above estimate is valid if the posterior p(x|y) and q(x) are
known completely. If they are only known up to their proportionality
constants, then ηx can be estimated by

η̂x =

∑M

m=1 x(m) p(x(m)|y)

q(x(m))∑M

m=1
p(x(m)|y)

q(x(m))

(7)

where η̂x also converges by the strong law of large numbers.
One interpretation of this result is that the samples x(m) form

the support of a discrete random measure χ = {x(m), w(m)} where
w(m) are weights associated to the samples, and

w
(m) ∝

p(x(m)|y)

q(x(m))
(8)

and

M∑
m=1

w
(m) = 1. (9)

This random measure “approximates” a target distribution (in our
case a posterior) and can be used for computing estimates of integrals
under that distribution.

The idea of PMC is to apply the importance sampling iteratively,
that is, once the first random measure χ1 is obtained, based on
its support and set of weights one constructs a better importance
function followed by the generation of a new set of samples from it
and association of new weights to the samples. Thereby, one obtains
χ2 and continues to construct in a similar fashion χ3, χ4, and so on.

A generic implementation of a PMC algorithm contains the
following steps. Let j denote the iteration number. Then, for
j = 1, 2, · · ·

1. Choose an importance function qj,m(x)

2. Draw the samples x
(m)
j from qj,m(x),m = 1, 2, · · · , M .

3. Compute the weights

w̃
(m)
j ∝

p(x
(m)
j |y)

qj,m(x
(m)
j )

, m = 1, 2, · · · , M.

4. Normalize the weights by

w
(m)
j =

w̃
(m)
j∑M

k=1 w̃
(k)
j

.

If another iteration is needed, set j = j + 1 and go back to
step one.

It should be noted that in the process of selecting an importance
function, we can employ resampling according to a multinomial
distribution defined by the weights w

(m)
j .

3.2. Marginalized PMC

The PMC methods are of great interest in high dimensional and
nonlinear problems where standard computational methods are
difficult to implement. However, when the dimension of the
parameter space is high, the use of PMC is also challenging
because it requires generation of a large number of samples. In
some problems, some of the unknown parameters are conditionally
linear given the remaining parameters, which may allow for an
implementation of the PMC that requires only generation of samples
of the nonlinear parameters. If the distributions permit analytical
integrations of the linear parameters (their marginalization), then
much improvement in computational efficiency of the PMC can be
achieved. This idea is analogous to the one known of RB and used
in particle filtering [9].
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Fig. 1. MSE vs number of iterations. Left: Frequencies. Right: Magnitudes of the amplitudes.

Consider the model given by (1). Suppose that at iteration j,
we only generate samples of the nonlinear parameters, x

(m)
n,j . The

weights that correspond to these parameters are given by

w
(m)
j ∝

p(x
(m)
n,j |y)

q(x
(m)
n,j )

(10)

where in the numerator of (10) we have the marginalized posterior
of xn for which we can write

p(x
(m)
n,j |y) ∝

∫
p(y|xl, x

(m)
n,j ) p(xl, x

(m)
n,j )dxl. (11)

If we can solve the integral in (11) analytically, the computation of
(10) is straightforward. Thus, the implementation of the proposed
approach hinges on the ability to solve (11).

4. EXAMPLE

We demonstrate our approach on the problem of frequency
estimation of sinusoids in noise. Let the observations y be modeled
by

y = A(xn) xl + w (12)

where y is a dy×1 vector,A(xn) is a dy×2K matrix whereK is the
number of sinusoids in the data, xn is aK×1 vector of frequencies,
xl is a 2K × 1 vector of amplitudes and w is a zero-mean Gaussian
noise vector with a covariance matrixCw.

More specifically, an element of y is obtained by

yt =
K∑

k=1

(ak cos(2πfkt) + bk sin(2πfkt)) + wt, t = 1, · · · , dy

where {ak, bk} are the amplitudes of the cosine and sine components
of the k-th sinusoid, respectively; fk denotes the frequency of the k-
th sinusoid; and wt is the observation noise. Hence the linear and
nonlinear parameters are given by

xl = [a1 b1 a2 b2 · · · aK bK ]�

xn = [f1 f2 · · · fK ]�.

The priors of the amplitudes and the frequencies are considered
independent, i.e.,

p(xl, xn) = p(xl) p(xn).

For the prior of the frequencies, we adopt a constant over the region
0 < f1 < f2 < · · · < fK < 0.5, where without loss of
generality, we identify the sinusoids as first, second, third etc. by
their frequencies. As a prior of the amplitudes we use a zero-mean
Gaussian with a covariance matrixCxl

.
As mentioned in the previous section, a critical step in the

implementation of the marginalized PMC is the ability to compute
p(x

(m)
n |y). For the stated problem, we can readily show that

p(x(m)
n |y) ∝

exp
(
− 1

2
y
�

(
Cw + ACxl

A
�

)−1
y

)

|Cw + ACxl
A�|

1
2

where for convenience of presentation, we dropped the argument of
A, x(m)

n .

5. SIMULATIONS

We present computer simulations that illustrate the validity of our
proposed method. We generated data according to the observation
model explained in the previous section.

In our experimental setup we generated data sets of dy = 30
samples and we fixed the number of sinusoids to two, i.e., K = 2.
Therefore we considered a six-dimensional state x, composed of
a nonlinear part of two components xn = [f1 f2]

� and a linear
part of four components xl = [a1 b1 a2 b2]

�. The prior for the
frequencies was uniform over the region 0 ≤ f1 < f2 < 0.5 and
for the amplitudes was a zero-mean Gaussian with covariance matrix
Cxl

= 5I.
We applied the proposed method (labeled as MPMC) and for

comparison and benchmarking purposes, we also implemented the
standard PMC algorithm that does not marginalize out the linear
part of the state (labeled as PMC). Both algorithms were run with
M = 1000 particles. For construction of the importance function,
we followed the procedure of [5], where we used a mixture density
with five mixands with predetermined variance vectors.

The performance of the methods was quantified by computing
the mean square error (MSE) of the parameters calculated as

MSE =
1

J

J∑
j=1

(x̂j − x
j)2

where xj was the true value of the parameter x (frequency or

2927



amplitude1) in the j-th run, and x̂j was the corresponding estimate
obtained by the method. The MSE plots were obtained by averaging
over J = 200 independent simulations. Figure 1 depicts the
average MSE for the parameters of the sinusoids when the true value
for the frequency of the first sinusoid was set to f1 = 0.24 and
that of the second to f2 = f1 + 1

2dy
(Note that the differences

in the frequencies is two times smaller than the resolution of the
classical periodogram). The amplitudes of the sinusoids were xl =
[a1 b1 a2 b2]

� = [2 cos π
6

2 sin π
6

2 cos −π
5

2 sin −π
5

]� and
the signal-to-noise ratios (SNRs) of both sinusoids were 10 dB.
From the results shown in the Figure we see that the proposed
method outperforms the PMC which does not marginalize the linear
parameters and performs closely to the lower bound imposed by the
MMSE for the linear parameters.
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Fig. 2. MSE of the frequencies vs SNR.

Figure 2 shows the performance of the methods in terms of the
MSE of the estimated frequencies for various values of SNR2. In
this case, for each run of the experiment we drew the frequencies
and amplitudes of the sinusoids from the corresponding priors. The
Figure also includes the posterior Cramér-Rao bound calculated
following [14], which serves as a benchmark for the estimates of
the unknowns. Similar conclusions as in the previous plot can be
drawn.

Finally, Figure 3 displays the histograms of the marginalized
posteriors of the nonlinear parameters approximated by our method.
In the Figure, we also superimposed the periodogram of the data
which clearly cannot discriminate the two sinusoids. The histograms
show that the marginalized posterior of the frequencies has most of
the probability masses around the true values of the frequencies.

6. CONCLUSIONS

In this paper we present a population Monte Carlo method
for parameter estimation in systems with both nonlinear and
conditionally linear parameters. Samples are only generated for
the nonlinear parameters of the model and the linear parameters
are integrated out. We demonstrated the method on estimation
of frequencies of sinusoids embedded in Gaussian noise, where
samples of the frequencies are generated and the amplitudes of the
sinusoids are marginalized. The simulation results show improved
performance over the standard population Monte Carlo approach.

1Note that, although the proposed algorithm does not explicitly estimate
the linear parameters, their estimation can be obtained in a straightforward
manner.

2The values of SNR in the x-axis of the plot are for each of the sinusoids,
and therefore for each experiment both sinusoids were assumed to have the
same SNR.
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Fig. 3. Periodogram of the data and approximated posterior of the
nonlinear parameters by the proposed MPMC.
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