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ABSTRACT
One of the most criticized aspects of particle filtering algo-

rithms is their dependence on model assumptions. However,

a rigorous study of the effect of modeling errors on the per-

formance of such algorithms is still missing. In this paper,

the problem of using an inaccurate discrete state-space model

is considered and a systematic methodology for studying the

effects on its performance is proposed. The methodology is

based on the use of the Kolmogorov-Smirnov statistic, which

in this case is a distance metric between the posterior charac-

terization when respectively correct and incorrect model as-

sumptions are made. An example with functional and distri-

butional inaccuracies is studied.

Index Terms— Robustness, error analysis, Monte Carlo

methods, filtering.

1. INTRODUCTION

The discrete state-space (DSS) approach is adopted to deal

with the non-linear filtering problems, as it describes the evo-

lution of states and its observation model. The problem con-

sists of the recursive estimation of the states xk ∈ R
nx given

the measurements yk ∈ R
ny at time instant k ∈ N, where

nx and ny are the dimensions of the state and measurement

vectors, respectively. The state equation models the evolution

of the state vector (on which the measurements depend on) as

a discrete–time stochastic model, where in general

xk ∼ p(xk|xk−1) for k ≥ 1 (1)

and where p(xk|xk−1) is referred to as the transitional prior.

The relationship between the measurements and the state is
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generically modeled by the probability distribution

yk ∼ p(yk|xk) for k ≥ 1 (2)

referred to as the likelihood function. The initial a priori
probability density function of the state vector, defined as

p(x0), is assumed to be also known.

The presented DSS model is the basis of Bayesian filter-

ing, where point estimates of the states are obtained from

their posterior probability density function (PDF). Closed-

form solutions to the filtering problem modeled in equations

(1) and (2) are only possible in limited situations where the

DSS model satisfies certain conditions. That is the case of lin-

ear/Gaussian DSS models which can be optimally processed

using the Kalman Filter (KF). However, one usually has to

resort to sub-optimal methods to deal with general DSS mod-

els. Particle filters (PFs) provide a powerful tool to deal with

non-linear/non-Gaussian DSS models [1, 2]. In brief, PFs

characterize the posterior distribution by a set of Ns random

samples taken from an importance density function, xi
k ∼

π(xk|xi
k−1,y1:k), with associated importance weights wi

k. In

general,

xi
k ∼ π(xk|xi

k−1,yk)

wi
k = wi

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

π(xi
k|xi

k−1,y1:k)
1
t

(3)

where t is a normalization constant.

For a set of generated particles,
{
xi

k, wi
k

}Ns

i=1
, the char-

acterization of the marginal posterior PDF is given by

p̂(xk|y1:k) =
Ns∑
i=1

wi
kδ(xk − xi

k) (4)

where δ(·) is the Dirac’s delta function. This approximation

converges a.s. to the true posterior as Ns → ∞ if the sup-

port of the chosen importance density includes the support of

the posterior. Resampling, consisting in replacing particles

with low importance weights and replicating those with high

importance weights, is performed after state estimation and

when significant degeneracy of the particles is observed.
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This paper aims at studying the effect of model inaccu-

racies in the performance of PFs. In Section 2, motivation

is provided and a qualitative definition of Bayesian robust-

ness is introduced. The idea behind the presented study is

to compare posterior characterizations of two PFs: one with

correct DSS model assumptions and another with an inaccu-

rate model. However, PFs exhibit special difficulties when

one aims at comparing their posterior approximations, as they

may not share the same support. To overcome the latter, the

Kolmogorov-Smirnov statistic is considered and presented in

Section 3. In Section 4 the proposed methodology is applied

to a practical example, and in Section 5 concluding remarks

are provided.

2. ROBUSTNESS TO MODEL INACCURACIES

It is important to remark that all methods (whether optimal

or sub-optimal) used in Bayesian filtering assume a perfect

knowledge of the underlying DSS model. Although it seems

apparent that in most cases the considered model may dif-

fer from the actual one in some sense, few studies have been

devoted in the literature to the evaluation of such effect on

Bayesian filtering. For instance, model distributions elicited

from empirical data can be erroneous, yielding to a filtering

error whose magnitude is yet to be evaluated. Basic research

on robust statistics has been focused on the parameter estima-

tion problem [3], while Bayesian robustness has been studied

mostly to identify wrongly elicited models [4]. Surprisingly,

little (or no) attention has been given to the study of the effect

of model inaccuracies on the output of a filtering algorithm,

e.g. PFs, except to that of linear filters [5].

The situation where one uses incorrect model can be ex-

pressed by modifying the DSS model to

x0 ∼ p̃(x0)
xk ∼ p̃(xk|xk−1) for k ≥ 1
yk ∼ p̃(yk|xk) for k ≥ 1 (5)

where the tilde denotes that a certain degree of uncertainty

may be present in the corresponding distribution.

We now extend the commonly adopted Hampel’s defini-

tion for qualitative robustness [6] to its Bayesian counterpart:

Definition 2.1 (Qualitative Bayesian Robustness) Consider a
DSS model and let the states xk evolve according to a distri-
bution p(xk|xk−1) denoted by Pk and let the observations yk

be i.i.d with distribution p(yk|xk), which we denote by Lk.
Consider a functional Tn that produces the desired statistics
of the model relying on the posterior PDF, whose distribu-
tion is denoted by LM(Tn), where M denotes the underlying
model defined by Pk and Lk.

Tn is called robust at Mk = M̃k if the distribution of Tn

is equicontinuous at M̃k, that is, if we take a suitable distance
d∗, in the space M of probability measures, and assume that

for all ε > 0 there exists a δp, δl > 0 such that,

d∗(P̃k,Pk) ≤ δp

d∗(L̃k,Lk) ≤ δl

}
⇒ d∗

(
LM̃(Tn), LM(Tn)

) ≤ ε. (6)

In other words, if a bounded change in the distributions

that define the DSS model is seen as a bounded change in the

distribution of the estimates, then the claim is that the estima-

tor is robust.

In this paper, we are interested in studying the effect of in-

correct model in (5) on the posterior PDF as obtained by the

PF. In the sequel, we express by p̂1(xk|y1:k) the obtained pos-

terior when the correct model is used and with p̂2(xk|y1:k)
the posterior computed with the incorrect assumptions. We

are interested in using a distance metric that quantifies the

difference between distributions. In particular, we have two

posterior characterizations which correspond to two PFs that

differ in some sense (due to inaccurate prior/likelihood mod-

els) and whose supports may be different because of resam-

pling and/or considering different number of particles. Thus,

it seems appropriate to compare the cumulative distribution

functions (CDFs) of the unknown states instead of their prob-

ability mass functions. In that case, the requirement of identi-

cal supports as in the case of the computation of the Kullback-

Leibler distance is not needed. The Kolmogorov–Smirnov

(K-S) statistic provides a suitable metric for comparison of

CDFs, and it has been extensively used in the literature [7, 8,

9].

For the sake of simplicity, we consider one-dimensional1

posterior distributions, i.e., nx = 1. The reason for such sim-

plification is that methods for computing the K-S statistic for

multi-dimensional distributions are much more computation-

ally intensive than those available for one-dimensional distri-

butions [8, 10].

3. TWO-SAMPLES KOLMOGOROV-SMIRNOV
TEST

The K-S test is a nonparametric test of equality of one-

dimensional probability distributions [7]. It is commonly

used in statistics to quantify the distance between an empiri-

cal distribution function and a reference CDF. In our case we

are interested in the two-samples K-S test, where the distance

is between two empirical distributions [11].

To form the statistic D(·, ·) from the sample distribution

functions F̂1(xk) and F̂2(xk), we compute their maximum

absolute difference over all the values of x

D
(
F̂1(xk), F̂2(xk)

)
= sup

x

∣∣∣F̂1(xk) − F̂2(xk)
∣∣∣ (7)

which is known as the two-sample K-S statistic D. Note that

F̂j(xk) is the CDF that corresponds to the posterior distribu-

tion p̂j(xk|y1:k). The K-S test uses metric in (7) to decide

1where xk denotes scalar, as opposed to the vectorial notation xk .
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between the null hypothesis (H0) that both distributions char-

acterize the same posterior PDF or the alternate hypothesis

(H1) that they approximate different PDFs, or

H0 : p̂1(xk|y1:k) = p̂2(xk|y1:k)
H1 : p̂1(xk|y1:k) 	= p̂2(xk|y1:k). (8)

The K-S test is then implemented by defining a critical

distance value dα(n1, n2) such that if D > dα(n1, n2), the

hypothesis H0 is rejected. Basically, dα(n1, n2) is the highest

tolerable distance in order not to reject H0 given the level of

significance α, where

Pr
{

D
(
F̂1(xk), F̂2(xk)

)
> dα(n1, n2)

}
= α , (9)

with 0 < α ≤ 1 indicating how strict the test for re-

jecting the null hypothesis is. The usefulness of the K-S

statistic comes from the fact that the distribution of the

statistic D(F̂1(xk), F̂2(xk)) is known. We can compute

Pr {D > dα} either exactly for small sample sizes or by us-

ing approximations for large sizes [8, 12]. For example, one

can show that

Pr {D > dα} = QKS ((
√

ne + 0.12 + 0.11/
√

ne)dα)

QKS(λ) = 2
∞∑

i=1

(−1)i−1e−2i2λ2
, (10)

where QKS(λ) is a monotonic function with limiting values

QKS(0) = 1 and QKS(∞) = 0. In the two-samples case, we

have that ne =
√

n1n2
n1+n2

, where nj is the number of particles

used to characterize p̂j(xk|y1:k). The approximation in (10)

is valid for ne ≥ 4 (see [8] and the references therein).

Therefore, after a significance level α is chosen, one can

obtain the corresponding critical value. These values can ei-

ther be computed as in (10) or be found in tables. It is impor-

tant to note that these values are independent of the underly-

ing distributions.

4. A CASE STUDY

As an example, we considered a one-dimensional nonlinear

time series whose true underlying DSS model was defined

by:

xk =
xk−1

2
+ 25

xk−1

1 + x2
k−1

+ 8 cos(1.2k) + uk

yk =
x2

k

β
+ vk , (11)

where β = 20, uk ∼ N (0, σ2
u) and vk ∼ N (0, σ2

v). In

the simulations we set the unit measurement noise variance,

σ2
v = 10 and the initial distribution p(x0) = N (0, 1). The

DSS model in (11) is often used for testing in the particle

filtering literature [2].
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Fig. 1. K-S statistic as a function of rσ2
v
.

The PF under study was the so-called Bootstrap Filter

(BF) [2], where the chosen importance density function is

the transitional prior, and the weights are proportional to the

likelihood. The posterior PDF obtained by the BF was de-

noted by p̂1(xk|y1:k). We also introduced an incorrect as-

sumption in the DSS model and used a second BF. The re-

sulting (probably erroneous) posterior approximation was de-

noted by p̂2(xk|y1:k). The K-S statistics were averaged over

100 Monte Carlo runs and 104 particles were considered for

both PFs.

First, we studied the modeling error in the variance of the

measurement noise. In other words, we wrongly assumed that

vk was distributed according to N (0, σ̃2
v). For the sake of

clarity, we defined the ratio between the measurement vari-

ances as rσ2
v

= σ̃2
v

σ2
v

. Figure 1 shows the evaluated K-S statistic

as a function of rσ2
v

for k = 1 and after k = 50 instants. From

the results it is apparent that, as the inaccuracy increased the

distance between the “correct” and wrong posterior increased

too. The minimum was attained for rσ2
v

= 1, as it was ex-

pected. From Figure 1 we see that the discrepancy did not

significantly increased over time.

Secondly, we studied the effect of assuming erroneous

state variances. Similarly, we considered that uk ∼ N (0, σ̃2
u)

and we defined the ratio rσ2
u

= σ̃2
u

σ2
u

between the wrong and

correct variances. Figure 2 shows the K-S statistic in that

case. After comparing these results with those of Figure 1,

we can conclude that, for this setup the performance of the

filter was less affected by incorrect assumptions of σ2
u than

by σ2
v . It is also evident that the errors tended to produce in-

creased discrepancy between the correct posterior and the one

obtained by using wrong assumptions.

Finally, we consider inaccuracies in the coefficient β in

(11). Figure 3 shows the results of the K-S statistic as a func-

tion of rβ = β̃
β . In this case, it is clear that the performance
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Fig. 2. K-S statistic as a function of rσ2
u

.
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Fig. 3. K-S statistic as a function of rβ .

of the filter was the most sensitive to the misspecifications of

the model parameters.

5. CONCLUSIONS

A qualitative Bayesian robustness was defined as a bounded

change in the distribution of an estimator due to bounded

changes in the distributions that describe a DSS model. Fol-

lowing this definition, the paper presents a general method-

ology for assessing the robustness of particle filtering algo-

rithms that is based on the Kolmogorov-Smirnov statistic. A

particular setup was considered in order to study the degrada-

tion in performance of particle filtering methods due to in-

accurate DSS models. By using the Kolmogorov-Smirnov

statistic, an assessment of the impact of different mismod-

eling errors was computed. The mismodeling was introduced

in the form of wrong parameters of the prior distributions and

errors in the likelihood function. The proposed test can point

to the parameters whose choice may be critical in the perfor-

mance of the particle filter.
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