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University of Strathclyde
Dept. Electronics and Electrical Engineering

Glasgow G1 1XW UK

ABSTRACT

Scale Invariant Feature Transform (SIFT) is a very power-
ful technique for image registration. While SIFT descriptors
accurately extract invariant image characteristics around key-
points, the commonly used matching approach for registra-
tion is overly simplified, because it completely ignores the
geometric information among descriptors. In this paper, we
formulate keypoint matching as a global optimization prob-
lem and provide a suboptimum solution using belief propaga-
tion. Experimental results show significant improvement over
previous approaches.

Index Terms— Image registration; belief propagation;
SIFT

1. INTRODUCTION

Image registration, an important component in image process-
ing, is widely used in numerous applications involving multi-
ple images. Applications range from computer vision, medi-
cal imaging, to super-resolution and hyper-spectral imaging.
In these applications, image registration is generally the first
image processing step used to integrate/align images for fur-
ther analysis. It transforms a set of images that are acquired
at different times or from different angles, into the same co-
ordinate system.
Many image registration algorithms have been proposed

in the literature; however, the most popular techniques are
based on Scale Invariant Feature Transform (SIFT) [1] and
its variants [2, 3]. SIFT extracts distinctive features in im-
ages, that are invariant to image scale and rotation. These fea-
tures can be used for reliable matching of images, robustness
to noise, change in illumination, and 3D camera viewpoint.
SIFT detects locations, keypoints, in the image invariant to
scaling and rotation and forms descriptors based on orienta-
tion, scale and location of the keypoint. While the descriptors
can accurately extract invariant image characteristics around
keypoints, the commonly used matching approach for reg-
istration is overly simplified in the sense that it completely
ignores the geometric information among descriptors. The
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main contribution of this paper is to address the insufficiency
of matching algorithms in SIFT and its variants. We introduce
an intuitive formulation and implement it using belief propa-
gation (BP). Initial results show significant improvement over
conventional SIFT. Note that the proposedmatching approach
can be directly applied to other SIFT variants as well.
The rest of the paper is organized as follows. A brief re-

view of SIFT is presented in the next section. In Section 3,
we describe our improved matching approach. Experimental
results are given in Section 4. We conclude and address future
work in Section 5.

2. SIFT

This section provides a brief introduction to SIFT. More de-
tails can be found in [1].
The main objective of SIFT is to identify locations, key-

points, of an image where there exist characteristics that are
invariant to scaling and rotation. These characteristics are
summarized by a descriptor. In a nutshell, SIFT generates
keypoints through finding the extremum of difference-of-
Gaussian function of an image. A candidate keypoint will
be refined to subpixel level and eliminated if found to be
unstable. Once a keypoint is located, a descriptor or a feature
vector is generated based on orientation(s), scale and location
of the keypoint.
Suppose that we have two images, Image 1 and Image

2, that need to be integrated. Denote D1(i) and D2(j) the
descriptors/feature vectors of the ith and the jth keypoints of
Image 1 and Image 2, respectively. Let xD1(i) and xD2(j) be
the corresponding locations of the keypoints in Images 1 and
2, respectively.
The matching problem consists of finding a keypoint in

Image 2 that best corresponds to each keypoint in Image 1. As
described in [1], the best candidate matching can be achieved
based on minimum Euclidean distance. In other words, for a
descriptorD1(i), the best match ĵ should satisfy

ĵ(i) = argminj ||D1(i)−D2(j)||2. (1)

Since it is possible that there does not exist a correct matching
keypoint in the second image, we need to impose a condition
to determine if this happens. Lowe [1] suggested to use the
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second best match (second minimum distance from the target
descriptor) to gauge the probability of a match. Therefore,
ĵ(i) in (1) will be considered as a valid match only if

|D1(i)−D2(ĵ(i))||2 < T ||D1(i)−D2(j)||2, ∀j �= ĵ(i), (2)

where T is a constant independent of images.

3. IMPROVED MATCHING FOR SIFT

While SIFT is highly successful in generating unique descrip-
tive features of images, the matching method proposed by the
original SIFT algorithm is overly simplified. Indeed, its lo-
cally optimized approach, that minimizes Euclidean distance,
completely ignores the geometric information among differ-
ent descriptors. As a result, mapped descriptors in Image 2 of
a nearby descriptor in Image 1 could be far away.
To incorporate geometric information, we considermatch-

ing as a global optimization problem and introduce a penalty
for keypoints that violate geometric invariance. Specifically,
our penalty function, Φ(m), is defined as the sum of the
second norms of differences between the distance from one
keypoint to another in Image 1, and the distance between the
corresponding mapped keypoints in Image 2. That is,

Φ(m) =
∑

i∈ID1

∑
j∈ID1

φ(i, j; m(i), m(j)), (3)

where

φ(i, j; i′, j′) =
∥∥∥
√
‖xD1

(i)− xD1
(j)‖2−

√
‖xD2

(i′)− xD2
(j′)‖2

∥∥∥
2
, (4)

and ID1
is the set of descriptors for the original image and

m(.) are the mapped descriptor indices in Image 2. Therefore,
we aim to solve a globally optimized problem as follows

m̂ = arg min
m

Ψ(m) + λΦ(m) (5)

with

Ψ(m) =
∑

i∈ID1

ψ(i, m(i)) (6)

and

ψ(i, i′) = ‖D1(i)−D2(i
′)‖. (7)

3.1. Belief Propagation
Unfortunately, the optimization problem in (5) is not convex
and appears to have exponential complexity. It is possible to
discard some keypoints initially as described by (2), but the
number of remaining keypoints will still be over a hundred
typically. Thus, an exhaustive search will require ∼ 100!

steps and apparently is computationally intractable. More-
over, applying (2) at such an early stage may unnecessarily
discard useful information. Furthermore, (2) could simply be
fundamentally faulty in some cases; that is, it is possible that
a match exists that does not satisfy this condition.
Instead, we propose to use Belief propagation (BP) to

solve (5). BP [4], also known as message passing algorithm
among many other names, is widely used in numerous signal
processing applications [5, 6, 7, 8, 9]. It can be considered as
an iterative algorithm to approximate the global optimum of
a discrete optimization problem.
To begin with, an optimization problem is divided into a

number of simpler (local) problems. At each iteration step,
instead of estimating the exact optimum solution, each local
problem attempts to evaluate the probability (belief) of each
possible solution being optimal. These local beliefs will be
exchanged among “neighboring” problems, where neighbor-
hood is defined based on the specific problem. These beliefs
will be incorporated in computing the beliefs in the next itera-
tion for each local problem. The algorithm stops either after a
fixed predefined number of iterations, or when the most prob-
able beliefs among all local problems converge.

3.2. Descriptor Matching using Belief Propagation
Since the optimization problem does not change even if we
raise the objective function exponentially, we can rewrite (5)
as

m̂ = arg max
m

exp(−Ψ(m)) exp(−λΦ(m)), (8)

which is equivalent to

m̂ = argmax
m

∏
i∈ID1

bDesi
(mi)

∏
i∈ID1

,j∈ID1

bDisti,j
(mi, mj) (9)

where

bDesi
(mi) = exp(−ψ(i, mi)/CDes), (10)

bDisti,j
(mi, mj) = exp(−φ(i, j; mi, mj)/CDist), (11)

and CDes/CDist = λ. bDesi
(mi) and bDisti,j

(mi, mj) can
be considered approximately as beliefs of the ith keypoint in
Image 1 being matched to themth

i keypoint in Image 2 given
the descriptor information and the information that the jth

keypoint is being matched to themth
j keypoint, respectively.

The reformulation in (9) does not make the optimization
problem tractable. However, if we relax the problem a bit and
have the optimization function only include bDisti,j

in which i
and j are close together, in the neighborhood (i.e., considering
j ∈ N (i) ⊂ ID1

with |N (i)| � |ID1
|) the problem can be

solved approximately using a type of BP algorithm known as
the max-product algorithm [10]. In other words, we want to
solve

m̂ = argmax
m

∏
i∈ID1

bDesi
(mi)

∏
i∈ID1

,j∈N (i)

bDisti,j
(mi, mj) (12)
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instead.
The max-product algorithm converges to the global opti-

mum if the network graph is a tree. In general, the algorithm
is suboptimal but is shown to converge to a very good solu-
tion in many applications [5, 6, 7, 8]. Before presenting our
algorithm, let us define μ

(n)
i,j (mj) as the belief of keypoint i

that the correct match for keypoint j ismj at the nth iteration.
This message is passed from keypoint i to keypoint j in each
iteration. The algorithm is summarized as follows:

1. Initialize all messages μ
(0)
i,j (mj) as a constant. Set n =

1.

2. Update messages μ
(n)
i,j iteratively for i ∈ ID1

μ
(n)
i,j (mj) ← κ1max

mi

bDisti,j
(mi, mj)bDesi

(mi)

∏
j′∈N (i)\j

μ
(n−1)
j′,i (mi). (13)

3. Compute overall beliefs

b
(n)
i (mi)← κ2bDesi

(mi)
∏

j′∈N (i)

μ
(n)
j′,i(mi), (14)

m̂i = argmax
mi

b
(n)
i (mi) (15)

4. n ← n + 1 and goto 2 until n reaches the maximum
number of iterations.

κ1 and κ2 above are normalization constants. It is desirable
to vary them such that

∑
mj

μi,j(mj) and bi(mi) are nor-
malized to 1. Then, bi(mi) can be physically interpreted as
probability of keypoint i matching to mi. Moreover, it be-
comes reasonable to discard a keypoint only when bi(m̂i) is
less than some probability threshold pth.

3.3. Least-Square Registration
After the matched keypoints are determined, the two images
can be registered by simply computing the best projective
transform to satisfy the matching points [1]. Given a set of
keypoint locations (xi, yi) in Image 1 and the locations of cor-
responding mapped keypoints (x′

i, y
′
i) in Image 2, we need to

find an optimum 3×3 matrix A such that

A

⎡
⎣
xi

yi

1

⎤
⎦ =

⎡
⎣

x′
i

y′
i

1

⎤
⎦ . (16)

The equation above can be rearranged to gather the unknowns
into a column vector. Thus, we have

2
66664

Xi Yi 1 0 0 0 0 0 0

0 0 0 xi yi 1 0 0 0

0 0 0 0 0 0 xi yi 1

· · ·

· · ·

3
77775

| {z }
B

·

2
66666666666664

A1,1
A1,2
A1,3
A2,1
A2,2
A2,3
A3,1
A3,2
A3,3

3
77777777777775

| {z }
w

=

2
66666664

x
′

i

y
′

i
1

.

.

.

3
77777775

| {z }
c

.

(17)

The least-squares solution for A can be computed by solving
the normal equation

w = [BT B]−1BT c, (18)

which can be solved efficiently and in a numerically stable
manner via QR factorization.

4. EXPERIMENTS

Our SIFT implementation is based on the open source work
from Vedaldi [11]. We applied our algorithm to the INRIA
Graffiti dataset [12]. Fig. 2 shows example matches for orig-
inal images, shown in Fig. 1, using SIFT and the proposed
algorithm. There are a couple of errors shown in the original
SIFT matching. In particular, the keypoints from the original
image are all fairly close together. However, SIFT essentially
ignores this information and matches one of the keypoints to
a keypoint far away from the others. The proposed BP algo-
rithm, however, attempts to keep distance invariance as shown
in the bottom figure of Fig. 2.
The registration results using least-square registration as

described in Section 3.3 for Fig. 1 are shown in Fig. 3. Figs.
4 and 5 demonstrate two more registration examples. Sig-
nificant improvement is observed in the proposed algorithm
result compared to the original matching approach [1].
Throughout our experiments, we have setCDes = 50, 000

and CDist = 700. The number of neighbors for all input key-
points, |Ni|, is set to 5. To speed up BP, we restrict the pos-
sible matches to only ten descriptors with the highest initial
(prior) matches. The threshold probability described in Sec-
tion 3.2, pth, is set to 0.7. The total number of BP iterations
for each case is 10. The computation time of the BP algorithm
varies significantly with the number of original descriptors
found by the SIFT algorithm. For typical number of descrip-
tors of around a thousand, the BP algorithm spends roughly
one minute for a Pentium 4 PC. However, our current code is
not yet optimized and is implemented as a MATLAB/C-MEX
hybrid.

Fig. 1. Original images.

5. CONCLUSION AND FUTUREWORK

In this paper, we propose using the BP algorithm to improve
traditional SIFT-based image registration. Initial results show
significant improvement over the traditional approach. Our
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Fig. 2. Five example matches by SIFT (top) and by the pro-
posed algorithm (bottom). The distance constraint apparently
helps to fix some potential matching errors.

Fig. 3. Registration result by SIFT (top) and by the proposed
algorithm (bottom).

BP-based approach can be applied to other SIFT variants such
as PCA-SIFT [2], which will be part of future work.
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