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ABSTRACT

This paper targets the problem of clock synchronization for

a set of receivers lying within the broadcast range of two

nodes implementing a general sender-receiver protocol using

a wireless channel. The maximum likelihood estimate of the

clock offset of the inactive node (and mean link delay) hear-

ing the broadcasts from both the master and slave nodes was

derived in [1] assuming symmetric exponential link delays.

In this paper, the minimum variance unbiased estimate for

the clock offset of such nodes is derived by applying the Rao-

Blackwell-Lehmann-Scheffé theorem. The result is important

in the realm of wireless sensor networks, where a tight net-

work synchronization along with a conservative energy uti-

lization plays a major role in network performance.

Index Terms— Clock Synchronization, Wireless Sensor

Networks.

1. INTRODUCTION

A wireless sensor node is equipped with a tiny microproces-

sor, sensor, battery and a radio for communication capabili-

ties. Due to the deployment of the network usually for the

lifetime, the power consumption in the sensor nodes assumes

a paramount importance and the central player in designing

of algorithms.

Various protocols addressing the clock synchronization

problem in Wireless Sensor Network (WSN) are mainly

based on packet synchronization techniques among which the

sender-receiver approach [2] is widely utilized. Owing to the

wireless nature of the broadcast medium, the nodes located

in the common broadcast region of a master and slave node

can overhear the time synchronization packets between them

and exploit the received observations for synchronizing their

clocks with the master node. In [1], the Maximum Likelihood

Estimates (MLE) for the clock offset and mean link delays

of the inactive nodes were derived under the symmetric ex-

ponential delay model. This paper not only derives the more

attractive minimum variance unbiased estimator for the clock

offset, but also addresses the problem under the more realistic

asymmetric delay model.

A WSN consists of several nodes, with a master node

r chosen as the reference. Fig. 1 depcits a series of mes-

sages exchanged between node r and another node s (chosen

as the slave node) whose clock offset is ψs
o with respect to

node r. As illustrated in Fig. 1, the timestamps mr
k and msr

k

are recorded by node r at pre-transmission and post-reception

of timing messages, while node s records mrs
k and ms

k ac-

cording to its own time reference at post-reception and pre-

transmission of timing messages.

It is also clear from Fig. 1 that many nodes like node t,
whose clock offset with respect to node r is ψt

o, lie within

the intersection of the broadcast regions of nodes r and s and

hence receive the packet exchange through the channel be-

tween nodes r and s. They can synchronize their clocks with

the reference conserving considerable power.

For simplicity, it is assumed that the deterministic part of

link delays τ is unknown but same for all the nodes receiv-

ing the messages from nodes r and s due to similar hardware

specifications and characteristics of the nodes. The solution

for different τ follows along the similar lines. In addition, the

random link delays, εrs
k , εrt

k and εst
k , are modeled as coming

from the exponential distribution and both cases with similar

and dissimilar means will be studied in detail. The justifica-

tions behind these assumptions can be found in detail in the

literature. The following equations summarize the model de-

picted above for k = 1, · · ·, N .

mrs
k = mr

k + ψs
o + τ + εrs

k ,

mrt
k = mr

k + ψt
o + τ + εrt

k ,

mst
k = ms

k − ψs
o + ψt

o + τ + εst
k ,

where εrs
k , εrt

k and εst
k are independent and identically dis-

tributed exponential random variables with means α, β and

γ, respectively. Rearranging the equations and introducing

the notations Uk � mrs
k − mr

k, Vk � mrt
k − mr

k and Wk �
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Fig. 1. Timing message exchange between nodes r and s,

which node t is also receiving

mst
k − ms

k yields

Uk = ψs
o + τ + εrs

k , (1)

Vk = ψt
o + τ + εrt

k , (2)

Wk = ψt
o − ψs

o + τ + εst
k . (3)

Next, we discuss the derivation of the minimum variance

unbiased estimator for the clock offset of the inactive nodes.

2. CLOCK OFFSET ESTIMATION

Since the Mean Square Error (MSE) usually depends on the

unknown parameter, a technique chosen to attain realizable

yet best estimators is to constrain the bias to be zero, because

since the dependance of minimum MSE estimator on the un-

known parameter typically comes from the bias. Therefore,

restricting the possible estimators to be unbiased and then

finding the estimator with the smallest variance for all values

of the unknown parameter yields the optimal solution within

the class of unbiased estimators. Hence, we proceed towards

deriving the MVUE for the clock offset and mean link delays

for the problem at hand.

Herein, the MVUE is obtained based on the Rao-Blackwell-

Lehmann-Scheffé theorem. First, the likelihood function is

factored according to Neymann-Fisher factorization theorem

which gives the sufficient statistics T. Second, the com-

pleteness of the sufficient statistics is checked. In case it is

complete, any of the following two approaches yields the de-

sired result θ̂ as the MVUE: either for any unbiased estimator

θ̌, θ̂ = E[θ̌|T] is evaluated, or a function g(T) of the suf-

ficient statistics is found such that θ̂ = g(T) is an unbiased

estimator. The MVUE in the current scenario is obtained

following these lines.

Let ΨA � [ψt
o ψs

o τ α β γ]T . In the asymmetric delays

case, the likelihood function for the clock offset as a function

of observations {Uk}N
k=1, {Vk}N

k=1 and {Wk}N
k=1 from (1),

(2) and (3) is given by

L
(
ψt

o, ψ
s
o, τ, α, β, γ

)
= (αβγ)−N

e−
∑ N

k=1[ 1
α (Uk−ψs

o−τ)].

e−
∑ N

k=1[ 1
β (Vk−ψt

o−τ)+ 1
γ (Wk−ψt

o+ψs
o−τ)].

.I[U(1)−ψs
o−τ] I[V(1)−ψt

o−τ] I[W(1)−ψt
o+ψs

o−τ],

where I[·] denotes the unit step function. The likelihood func-

tion can now be factored as

L
(
ψt

o, ψ
s
o, τ, α, β, γ

)
= h1(τ, α, β, γ)g1

(
N∑

k=1

Uk, ψs
o, α

)
.

g2

(
N∑

k=1

Vk, ψt
o, β

)
g3

(
N∑

k=1

Wk, ψt
o, ψ

s
o, γ

)
.

g4

(
U(1), ψ

s
o, τ

)
g5

(
V(1), ψ

t
o, τ

)
g6

(
W(1), ψ

t
o, ψ

s
o, τ

)
where

g1

(
N∑

k=1

Uk, ψs
o, α

)
= e−

1
α

∑ N
k=1(Uk−ψs

o),

g2

(
N∑

k=1

Vk, ψt
o, β

)
= e−

1
β

∑ N
k=1(Vk−ψt

o),

g3

(
N∑

k=1

Wk, ψt
o, ψ

s
o, γ

)
= e−

1
γ

∑ N
k=1(Wk−ψt

o+ψs
o),

g4

(
U(1), ψ

s
o, τ

)
= I

[
U(1) − ψs

o − τ
]
,

g5

(
V(1), ψ

t
o, τ

)
= I

[
V(1) − ψt

o − τ
]
,

g6

(
W(1), ψ

t
o, ψ

s
o, τ

)
= I

[
W(1) − ψt

o + ψs
o − τ

]
,

h1 (τ, α, β, γ) = (αβγ)−N
eNτ[ 1

α + 1
β + 1

γ ].

Note that the above functions depend on the data only

through T = {∑N
k=1 Uk, U(1),

∑N
k=1 Vk, V(1),

∑N
k=1 Wk,

W(1)}. Therefore, according to the Neyman-Fisher factor-

ization theorem, T is a sufficient statistic for ΨA. Since

dim(T) = dim(ΨA), we have to find a 6× 1 vector function

Ψ̂A such that E[Ψ̂A] = ΨA, provided that T is a complete

sufficient statistic. Since the probability density function

(pdf) of T is required to check whether T is complete, and∑N
k=1 Uk and U(1),

∑N
k=1 Vk and V(1), and

∑N
k=1 Wk and

W(1) are not independent, we proceed as follows. Consider-

ing into account only the data set {Vk}N
k=1 first, it is evident

that the pdf of the minimum order statistic V(1) is exponential

with mean β/N , whereas the joint pdf of V(1), V(2), . . . , V(N)

is given by

f
(
V(1), V(2), · · ·, V(N)

)
= N !β−Ne

− 1
β

N∑
k=1

{Vk−ψt
o−τ}

N∏
k=1

I
[
Vk − ψt

o − τ
]
. (4)
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Now consider the transformation

ηk = (N − k + 1)
(
Vk − V(k−1)

)
, k = 1, 2, · · ·, N,

where V(0) = ψt
o +τ . Since

∑N
k=1(Vk −ψt

o−τ) =
∑N

k=1 ηk

and the Jacobian of the transformation is N !, a substitution in

(4) reveals that

p (η1, η2, · · ·, ηN ) = β−Ne
− 1

β

N∑
k=1

ηk

.

N∏
k=1

I [ηk] ,

i.e., ηk are independent exponential RVs with similar mean

β. In addition, since each ηk ∼ exp(β), each ηk also as-

sumes a Gamma distribution ηk ∼ Γ(1, β). Using the rela-

tionship
∑N

k=1(Vk −V(1)) =
∑N

k=2 ηk, and the fact that each

of η2, η3, ···, ηN is independent of η1 (and hence of V(1), since

η1 = N(V(1) − ψt
o − τ)),

∑N
k=1(Vk − V(1)) ∼ Γ(N − 1, β)

and is independent of V(1).

By a similar reasoning, it can be deduced that
∑N

k=1(Uk−
U(1)) ∼ Γ(N − 1, α) and

∑N
k=1(Wk − W(1)) ∼ Γ(N −

1, γ), and are independent of U(1) and W(1), respectively.

Therefore, the one-to-one function T′ = {∑N
k=1(Uk −

U(1)), U(1),
∑N

k=1(Vk−V(1)), V(1),
∑N

k=1(Wk−W(1)), W(1)}
of T is also sufficient for estimating ΨA because the suffi-

cient statistics are unique within one-to-one transformations.

Consequently, T′ comprises of six independent random vari-

ables, which in terms of the three-parameter Gamma distri-

bution are given by

u =
N∑

k=1

(Uk − U(1)) ∼ Γ (N − 1, α, 0) ,

U(1) ∼ Γ (1, α/N,ψs
o + τ)

v =
N∑

k=1

(Vk − V(1)) ∼ Γ (N − 1, β, 0) ,

V(1) ∼ Γ
(
1, β/N, ψt

o + τ
)

w =
N∑

k=1

(Wk − W(1)) ∼ Γ (N − 1, γ, 0) ,

W(1) ∼ Γ
(
1, γ/N, ψt

o − ψs
o + τ

)
Note that the domains of u, v and w are controlled by

U(1), V(1) and W(1), respectively. Next, it has to be checked

whether T′, or equivalently T, is complete. Completeness

implies that there is but one function of T that is unbiased. Let

g(T′) be a function of T′ such that E[g(T′)] = ΨA. Suppose

that there exists another function h for which E[h(T′)] = ΨA

is also true. Then,

E
[
g

(
T′) − h

(
T′)] = E

[
π

(
T′)] = 0 ∀ ΨA

where π(T′) � g(T′) − h(T′) and the expectation is taken

with respect to p(T′;ΨA). As a result,∫ ∫ ∫ ∫ ∫ ∫
R{U(1),V(1),W(1)}

π
(
u,U(1), v, V(1), w, W(1)

)
.

α−(N−1)

Γ (N − 1)

uN−2e−
u
α .

N

α
e−

N
α {U(1)−ψs

o−τ}.
β−(N−1)

Γ (N − 1)
vN−2e−

v
β .

N

β

e−
N
β {V(1)−ψt

o−τ}.
γ−(N−1)

Γ (N − 1)
wN−2e−

w
γ .

N

γ

e−
N
γ {W(1)−ψt

o+ψs
o−τ}dudU(1)dvdV(1) dw dW(1) = 0,

which is true for all ΨA, and where RU(1),V(1),W(1) is the

region defined by I[U(1) − ψs
o − τ ], I[V(1) − ψt

o − τ ] and

I[W(1) − ψt
o + ψs

o − τ ]. The above relation can be expressed

as∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
π

(
u, U(1), v, V(1), w,W(1)

)
.

(uvw)N−2
e
−

{
u+NU(1)

α +
v+NV(1)

β +
w+NW(1)

γ

}
.

du dU(1) dv dV(1) dw dW(1) = 0 ∀ ΨA

The left side of the above equation is the six-dimensional

Laplace transform of π(T′). It follows from the uniqueness

theorem for two-sided Laplace transform that π(T′) = 0 al-

most everywhere, leading to g(T′) = h(T′) and hence there is

only one unbiased function of T′. This proves that the statis-

tic T′, or equivalently T, is complete for estimating ΨA when

the links are asymmetric and all of α, β and γ are unknown.

Finally, the complete sufficient statistic T is also minimal ow-

ing to Bahadur’s theorem which states that if T, taking values
in �k, is sufficient for ΨA and boundedly complete, then T
is minimal sufficient.

Consequently, finding an unbiased estimator for ΨA as

a function of T yields the MVUE, according to the Rao-

Blackwell-Lehmann-Scheffé theorem. Therefore, the six

unbiased functions of T for each of ψt
o, ψs

o, τ , α, β and γ just

by inspection are

Ψ̂A =
1

N − 1

⎡
⎢⎢⎢⎢⎢⎢⎣

N
(
2V(1) − U(1) − W(1)

) − (
2V − U − W

)
N

(
V(1) − W(1)

) − (
V − W

)
N

(
U(1) − V(1) + W(1)

) − (
U − V + W

)
N

(
U − U(1)

)
N

(
V − V(1)

)
N

(
W − W(1)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As a result, the MVUE for the desired parameter, the

clock offset of the inactive nodes, for asymmetric unknown

network delays is expressed as

ψ̂t
o =

1
(N − 1)

[
N

(
2V(1) − U(1) − W(1)

) − (
2V − U − W

)]
,

and its variance, equal to its MSE, is

var(ψ̂t
o) =

1
N (N − 1)

(
α2 + 4β2 + γ2

)
.
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Now turning to the symmetric case when α = β = γ � λ,

the likelihood function for the clock offset as a function of

observations {Uk}N
k=1, {Vk}N

k=1 and {Wk}N
k=1 from (1), (2)

and (3) can be expressed as

L
(
ψt

o, ψ
s
o, τ, λ

)
= λ−3Ne

− 1
λ

N∑
k=1

[Uk+Vk+Wk−2ψt
o−3τ]

.

I[U(1)−ψs
o−τ]I[V(1)−ψt

o−τ]I[W(1)−ψt
o+ψs

o−τ].

Note that the above likelihood function can be factored as

L
(
ψt

o, ψ
s
o, τ, λ

)
= g1

(
N∑

k=1

Uk,
N∑

k=1

Vk,
N∑

k=1

Wk, λ

)

g2

(
U(1), ψ

s
o, τ

)
g3

(
V(1), ψ

t
o, τ

)
g4

(
W(1), ψ

t
o, ψ

s
o, τ

)
h1

(
ψt

o, τ, λ
)
,

where

g1(
N∑

k=1

Uk,

N∑
k=1

Vk,

N∑
k=1

Wk, λ) = e
− 1

λ

N∑
k=1

[Uk+Vk+Wk]
,

g2(U(1), ψ
s
o, τ) = I[U(1) − ψs

o − τ ],
g3(V(1), ψ

t
o, τ) = I[V(1) − ψt

o − τ ],
g4(W(1), ψ

t
o, ψ

s
o, τ) = I[W(1) − ψt

o + ψs
o − τ ],

h1(ψt
o, τ, λ) = λ−3Ne

N
λ [2ψt

o+3τ ].

It is evident that T = {∑N
k=1(Uk + Vk + Wk), U(1),

V(1),W(1)} are the minimal sufficient statistics according

to Neymann-Fisher Factorization theorem. Now proceed-

ing similarly as before,
∑N

k=1(Uk + Vk + Wk) is depen-

dent on U(1), V(1) and W(1). As a result, T can be trans-

formed into T′ = {∑N
k=1(Uk − U(1) + Vk − V(1) + Wk −

W(1)), U(1), V(1),W(1)}. It can be concluded from the dis-

cussion in the last section that
∑N

k=1(Uk − U(1) + Vk −
V(1) + Wk − W(1)) is Gamma distributed with parameters

(3(N − 1), λ). Hence, T′ is a combination of four indepen-

dent random variables, which in terms of the three parameter

Gamma distribution are

q =
N∑

k=1

(Uk − U(1) + Vk − V(1) + Wk − W(1))

∼ Γ (3 (N − 1) , λ, 0) ,

U(1) ∼ Γ (1, λ/N, ψs
o + τ) , V(1) ∼ Γ

(
1, λ/N,ψt

o + τ
)
,

W(1) ∼ Γ
(
1, λ/N, ψt

o − ψs
o + τ

)
.

Next, defining g(T′) and h(T′) as functions of T′ such

that E[g(T′)] = E[h(T′)] = ΨS,

E
[
g

(
T′) − h

(
T′)] = E

[
π

(
T′)] = 0 ∀ ΨS

where the expectation is taken with respect to p(T′;ΨS). As

a result, since the domain of q is also dictated by U(1), V(1)

and W(1), it follows that∫ ∫ ∫ ∫
RU(1),V(1),W(1)

π
(
q, U(1), V(1), W(1)

) λ−3(N−1)

Γ [3 (N − 1)]
q3N−4e−

q
λ

(
N

λ

)3

e−
N
λ {U(1)+V(1)+W(1)−2ψt

o−3τ}dqdU(1)dV(1)dW(1) = 0,

which is true for all ΨS and where RU(1),V(1),W(1) is the re-

gion defined by I[U(1) − ψs
o − τ ], I[V(1) − ψt

o − τ ] and

I[W(1)−ψt
o+ψs

o−τ ]. It follows that for any ΨS the following

equation must hold:∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
π

(
q, U(1), V(1),W(1)

)
q3N−4

e−
N
λ { q

N +U(1)+V(1)+W(1)}dqdU(1)dV(1)dW(1) = 0.

From the uniqueness of the two-sided Laplace transform, it

follows that π(T′) = 0 almost everywhere, resulting in the

completeness of T′, or equivalently T. Hence, T is also the

minimal sufficient statistics from Bahadur’s theorem and the

MVUE is an unbiased estimator of T expressed as

Ψ̂S=

⎡
⎢⎢⎢⎢⎣

2V(1) − U(1) − W(1)

V(1) − W(1)
1

3(N−1)

{
3N

(
U(1) + W(1) − V(1)

)
+

2
(
2V(1) − U(1) − W(1)

) − (
U + V + W

)}
N

3(N−1)

{(
U + V + W

) − (
U(1) + V(1) + W(1)

)}

⎤
⎥⎥⎥⎥⎦ .

Hence, the MVUE for the clock offset of the inactive

node, in the case of symmetric unknown delays, is given by

ψ̂t
o = 2V(1) − U(1) − W(1),

and its variance can be expressed as var (ψt
o) = 6λ2/N2.

3. CONCLUSION

For a general sender-receiver protocol, the expression for

the minimum variance unbiased estimator has been derived,

which is important for synchronization in the energy conserv-

ing wireless sensor networks.
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