
DISTRIBUTED DETECTION OF A NUCLEAR RADIOACTIVE SOURCE BASED ON A
HIERARCHICAL SOURCE MODEL

Ashok Sundaresan, Pramod K. Varshney

Department of EECS
Syracuse University, USA.

Nageswara S.V. Rao

Computer Science and Mathematics Division
Oak Ridge National Laboratory, USA.

ABSTRACT

Detection of a nuclear radioactive source is considered using a par-
allel sensor network architecture and a fusion center. A Poisson-
Gamma hierarchical model is used to represent the distribution of
the count data received by the sensors. Local sensors are assumed
to be single threshold binary quantizers that send a vector of sensor
decisions over time to the fusion center for global decision-making.
Using the developed count model, a generalized likelihood ratio test
(GLRT) using a restricted range MLE (RMLE) is proposed to declare
the global decision. The performance improvement resulting from
using the restricted range MLE over the unrestricted MLE while im-
plementing the GLRT is depicted using simulated as well as real data
collected from a test-bed using radiation sensors. Using bootstrap,
95% confidence bounds on the ROC curves, evaluated using real
data, are obtained.

Index Terms— Distributed Detection, Decision Fusion, Hierar-
chical Model, Restricted MLE

1. INTRODUCTION

An important application of detecting the presence of a nuclear ra-
dioactive source is in countering potential terrorist activities like the
explosion of the so called dirty bomb in a densely populated area.
The task is to detect the low level radiations from vehicles transport-
ing these sources before they reach their destination. We propose a
system comprising a network of radiation counters operating collab-
oratively to detect the presence of a radioactive source.

Detection of radioactive sources using sensor networks has re-
ceived some attention over the past couple of years. In [1], the
authors examine the increase in signal-to-noise ratio obtained by a
simple combination of data from networked sensors compared to a
single sensor. The costs and benefits of using a network of radiation
detectors for radioactive source detection are analyzed and evalu-
ated in [2]. In [3], the authors propose a Bayesian methodology for
source location estimation of a nuclear source from raw sensor mea-
surements. In [4], a distributed detection system for detecting the
presence of a nuclear source was presented using the theory of cop-
ulas to exploit spatial correlation of sensor observations and in [5], a
detection method using sequential probability ratio test (SPRT) was
developed. Both methods assumed a Poisson distribution for radi-
ation counts emitted by the radioactive source. In this work, we
further investigate the problem of nuclear source detection and make
the following contributions:

• Experiment-driven signal modeling. We propose the use
of a hierarchical signal model to characterize the probability
distribution of the received sensor measurements.

• Distributed detection of the radiation source using the de-
veloped signal model. Here, a GLRT [6] based decision fu-
sion method employing restricted-range maximum likelihood
estimation (RMLE) is proposed.

2. PROBLEM FORMULATION

We first consider development of an appropriate signal model to rep-
resent the measurements collected by the sensors. We make use of
data collected from a radiation test-bed set up at Oak Ridge Na-
tional Laboratory (ORNL). The test-bed setup is described in [5].
Two methods are used to evaluate the developed signal model. The
first methods compares the empirical cumulative distribution func-
tion (cdf) of sensor observations and the cdf of the proposed dis-
tribution obtained by estimating the model parameters from sensor
observations. In the second method, the proposed model is evaluated
using the chi-square goodness-of-fit (χ2 GoF) test [7].

We then consider distributed detection of the nuclear radioac-
tive source using a parallel sensor network architecture. The detec-
tion problem is formulated as a composite hypothesis testing prob-
lem where the H1 and H0 hypotheses indicate the presence and ab-
sence of a source respectively. L radiation sensors monitor a region
for the presence of a nuclear source for N time intervals. Under
H0, the sensor measurements correspond to background radiation
only. Under H1, sensor measurements represent the source as well
as background radiation. The parameters of the model representing
the background signal under H0 (θ0) are assumed to be known a
priori while those under H1, that are dependent on the source loca-
tion and intensity parameters, are unknown (θ1). The distribution of
the observations under both hypotheses differs only in terms of the
parameter vector. Hence, the composite hypothesis testing problem
can be recast as,

H0 : θ = θ0

H1 : θ = θ1 �= θ0

(1)

The local decision makers (sensor nodes) are single threshold
binary quantizers that send a vector of one bit decisions over time
to a fusion center. In this paper, we assume that the fusion center
is equipped with the location information of all sensors. Let τi be
the quantizer threshold at the ith sensor. The sensor decisions, at
any time interval 1 ≤ n ≤ N , are quantized versions of sensor
observations defined as

uin = Q(zin) =

{
0 if −∞ < zin ≤ τi,

1 if τi ≤ zin < ∞ (2)

Sensor thresholds (τi, ∀i) are set by constraining the local prob-
ability of false alarm at each sensor (determined using the measure-
ment statistics under H0). Since H1 is a composite hypothesis and
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no prior knowledge about the parameter vector θ1 is assumed to be
known, the fusion rule is formulated as a generalized likelihood ra-
tio test (GLRT). In deriving the GLRT, conditional independence of
sensor observations, over space as well as time, is assumed.

3. MEASUREMENT MODEL DEVELOPMENT

Radiation counts (Z) are typically assumed to be Poisson(λ) dis-
tributed random variables ([8] and [9]). Note that E[Z] = Var[Z] =
λ. However, count data that occur in practice are often over-
dispersed, i.e., the variance is higher than the mean. This is evident
from the statistics of the data collected from the ORNL test-bed.
Five datasets containing 167 radiation counts each were collected
using a single sensor in both the presence and absence of the source.
The sample estimates (SE) of mean and variance, along with their
corresponding 95% confidence intervals (CI) are displayed in Table
1. The 95% CIs are obtained by evaluating bootstrap percentiles
[10] from 10000 bootstrap samples. From Table 1, we can see that
for each dataset, the sample variance is much higher than the sample
mean under both hypotheses. Moreover, the bootstrap confidence in-
tervals for the mean and variance are also disjoint and far apart. This
further indicates that the mean and variance under either hypothesis
are unlikely to have values close to each other. Hence, the Poisson
distribution is not be an appropriate model for the measurement
counts because it does not take into account the observed over dis-
persion. We propose to employ a mixture distribution arising from
a two-stage hierarchical model to statistically characterize the ob-
served radiation counts. Letting the observed counts at the ith sensor
to be represented by zin, where i = 1, . . . , L and n = 1, . . . , N ,
the two-stage hierarchy under the jth hypothesis is given as follows.

zin ∼ Poisson(λij) λij ∼ Gamma(αij , βij) (3)

where, j = 0, 1 corresponding to H0 and H1.

The above hierarchical model can be considered as a “more vari-
able” Poisson distribution [11]. The extra variability is accounted for
by assuming the rate of the Poisson random variable at each time in-
terval to be random.

DS Background Source+Background
μ σ2 μ σ2

1
SE 7.54 53.18 9.00 64.17
CI [6.44, 8.67] [39.40, 67.94] [7.84, 10.23] [48.69, 80.05]

2
SE 8.39 91.59 9.90 88.18
CI [6.99, 9.87] [61.64, 125.31] [8.52, 11.40] [56.80, 127.67]

3
SE 6.99 32.38 8.55 47.54
CI [6.18, 7.83] [25.34, 39.57] [7.54, 9.62] [35.16,61.95]

4
SE 6.53 45.78 8.28 63.36
CI [5.54, 7.59] [31.51, 61.56] [7.12, 9.49] [41.26, 94.03]

5
SE 6.83 41.32 8.28 54.21
CI [5.88, 7.84] [29.30, 54.69] [7.24, 9.32] [41.84, 67.02]

Table 1. First and second order statistics of the sensor count data
along with their corresponding CIs both in the presence and absence
of the source. DS = Dataset number

To validate the proposed model for the statistical distribution
of sensor measurements, we evaluate the empirical cdf of the real
data and the cdfs obtained by fitting the proposed model and the
Poison distribution model to the real data. The cdf plots are shown
in Figures 1 and 2 for the background and source-plus-background
count respectively for a single dataset. Both figures clearly illustrate

Fig. 1. Empirical cdf of the real background count data and corre-
sponding fitted cdfs of the estimated Poisson-Gamma mixture and
simple Poisson models

Fig. 2. Empirical cdf of the real background plus source count data
and corresponding fitted cdfs of the estimated Poisson-Gamma mix-
ture and simple Poisson models

that the proposed mixture distribution is a much better fit for the
observed measurements when compared to the Poisson distribution.

We next consider the χ2 GoF test [7] to further investigate the
validity of the proposed model. For the sake of brevity, the details
about carrying out the test procedure have not been included in this
paper. The goodness-fit of test was conducted using real data sam-
ples accounting for both background and source plus background ra-
diation counts. The resulting p-values from the test for five datasets
are shown in Table 2. It can be seen that the p-values resulting from
the proposed mixture distribution are significant whereas those re-
sulting from the Poisson model are always zero. Thus there is a
greater probability for the null hypothesis to be accepted during the
GoF test (at some significance level) when the null hypothesis distri-
bution is assumed to be the Poisson-Gamma mixture. On the other
hand if the null hypothesis distribution is assumed to be Poisson, it
will always be rejected. This result provides further justification for
using the hierarchical model than the simple Poisson model.

Dataset p-value under H1 p-value under H0

Poisson Proposed Poisson Proposed

1 0.00 0.2262 0.00 0.2759
2 0.00 0.1158 0.00 0.0664
3 0.00 0.0635 0.00 0.0471
4 0.00 0.3095 0.00 0.1289
5 0.00 0.3101 0.00 0.0684

Table 2. p-values for the Poisson and proposed model resulting from
χ2 GoF test for the count data under H1 and H0 hypotheses
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4. DISTRIBUTED DETECTION SYSTEM DESIGN

Recall that the detection problem is given by Eq. (1). The parameter
vector under hypothesis Hj (j = 0, 1) is given by θj = [αj , βj ]

T

where αj = [α1j , . . . , αLj ]
T and βj = [β1j , . . . , βLj ]

T . The dis-
tribution of the sensor observations is given by the Poisson-Gamma
hierarchical model explained in Section 3. Under this model (see
Eq.(3)), the probability mass function (pmf) of the radiation counts
zin under Hj (j = 0, 1) at the ith sensor, is as follows.

P (Zin = zin|Hj) =
1

Γ(αij)

Γ(αij + zin)

zin!

βzin
ij

(βij + 1)αij+zin
(4)

Let Pr(uin = 1|H1) = pi and Pr(uin = 1|H0) = qi be the
local sensor probability of detection and local sensor probability of
false alarm respectively at the ith sensor. Constraining, qi, the local
sensor threshold τi can be obtained as follows.

τi =
⌈
F−1

Zi
(1− qi)

⌉
(5)

where, F−1
Zi

(·) is the inverse cdf for Zi = zin, ∀n.
The composite hypothesis test at the fusion center can be re-

formulated in terms of local sensor statistics (pi and qi). Maxi-
mizing the pmf of sensor decisions under H1 over θ1 is equivalent
to maximizing the pmf over pi for all i = 1, . . . , L. Under the
new formulation (see Eq.(6)), let the parameter vector under H1 be
φ1 = [p1, . . . , pL]T and that under H0 be φ0 = [q1, . . . , qL]T . φ1

is unknown, since it depends on θ1.

H0 : φ = φ0

H1 : φ = φ1 ≥ φ0

(6)

Let ui be the vector of sensor decisions received over N time periods
from sensor i. The collection of decision vectors at the fusion center
is given by u = [u1, . . . ,uL]T . The generalized likelihood ratio
(GLR) [6] based test statistic for fusion is given by Eq. (7), where

φ̂1 denotes the MLE [11] of φ1.

ΛG(u) =
P (u|H1, φ̂1)

P (u|H0)
(7)

Note that pi is nothing but the success probability of the Bernoulli
distributed random variable uin. Consider the likelihood function of
pi given in Eq. (8) where the assumption of temporal independence
of sensor decisions has been used. It can be seen that the ith sensors’
decisions (ui) are sufficient statistics [11] for estimating pi.

P (ui|pi) =
N∏

n=1

puin
i (1− pi)

(1−uin) = p
∑

uin
i (1− pi)

(N−∑
uin)

(8)
The ML estimate of pi is given by p̂i = arg max

pi

P (ui|pi).

It can be easily shown that p̂i = ūi, where ūi = (1/N)
∑N

n=1 uin

which is nothing but the mean of the sensor decisions. Thus, the ML
estimate of φ1 can be obtained.

Using the temporal and spatial independence of sensor decisions
under both hypotheses, the test statistic becomes

ΛG(u) =

∏L
i=1

∏N
n=1 P (uin|H1, φ̂1)

P (uin|H0)
(9)

Taking log on both sides and simplifying, the GLR based test statistic
is given as follows.

log ΛG(u) = N
L∑

i=1

[
log

(
p̂i(1− qi)

(1− p̂i)qi

)]
ūi + log

(
1− p̂i

1− qi

)
(10)

Fig. 3. Histogram of p̂i with N = 100, qi ≤ 0.2 which gives
τi = 15.

It can be seen that Eq.(10) is nothing but the generalized Chair-
Varshney test statistic where the local sensor probabilities of detec-
tion have been replaced by their ML estimates.

Since the first step of a GLRT is MLE, the detection performance
will depend on the quality of the estimate which again is a function
of the signal power and the number of observations (N ). When the
signal power is low and/or N is small, the quality of the estimate
will suffer. In Figure 3, we show the histogram of the estimated
probability of detection (p̂i) for a particular sensor when N = 100
and qi ≤ 0.2 after 10000 Monte Carlo runs. The paramter val-
ues (αij , βij) used were estimated from the experimental data corre-
sponding to that sensor. It can be noticed that 21.34% of the times,
p̂i is smaller than qi. Hence it is possible that the estimated value of a
particular sensor’s probability of detection (pi) may be smaller than
the probability of false alarm (qi), thereby degrading the decision-
making process of that particular sensor. If such a sensor’s decisions
are used for fusion it will bring down the global performance.

To avoid the degradation in global performance due to poor esti-
mates of the pi, we propose using the restricted range MLE (RMLE)
[11] while evaluating the GLR based test statistic. RMLE constrains
the range of the parameter of a random variable to be estimated based
on some prior knowledge or requirement. For detection problems, it
is reasonable and more meaningful to have the requirement that the
test is unbiased [12], i.e, the probability of detection is at least greater
than or equal to the probability of false alarm. Assuming local sensor
tests are unbiased (i.e. pi ≥ qi), the RMLE is given as follows.

p̂i = max(qi, ūi); (11)

The impact of using RMLE instead of the unrestricted MLE
can be understood by considering Eq.(10). Suppose ūi < qi, then
p̂i = qi as a result of using the RMLE and the term corresponding to
that sensor in the GLR test statistic reduces to zero. Thus, if a sensor
is “bad” (i.e. if ūi < qi for some i) then the RMLE has an effect of
automatically censoring that particular sensor’s decisions during fu-
sion, thereby preventing the degradation in global performance that
may occur if the unrestricted MLE is used for GLRT.

5. EXPERIMENT RESULTS

We present the performance comparison of the GLRT based fusion
rule using the unrestricted and the restricted MLE by using simulated
data first, using L = 3 sensors and 100 observations. The parameter
values under both hypotheses (αij and βij as defined in Section 4)
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Fig. 4. ROC using simulated dataset

used to generate the simulated data are given as follows.

αi0 = [1.0667, 1.3163, 1.0506, 1.0804, 1.2556]

βi0 = [9.4374, 9.9764, 9.8210, 9.8180, 9.6980]

αi1 = [0.9868, 0.9880, 0.9951, 0.9518, 0.9807]

βi1 = [8.4987, 8.9980, 9.5906, 9.1329, 9.0064]

Thresholds for the local binary quantizers are obtained by constrain-
ing the local probability of false alarm at each sensor to ≤ 0.2.
10000 Monte Carlo runs are carried out to generate the ROC curves
which are shown in Figure 4. From the figure it is clear that, using
the GLRT based fusion rule with RMLE results in considerable im-
provement in the detection performance than the unrestricted MLE.

Next real sensor traces belonging to a particular dataset collected
from the ORNL test-bed are used to evaluate the detection perfor-
mance of both strategies. Decision vectors from 3 sensors are fused.
The parameter values under H0 and H1 are as below.

αi0 = [0.6921, 1.8951, 0.8518] βi0 = [12.1334, 4.2468, 8.1329]

αi1 = [1.2195, 1.0506, 1.0804] βi1 = [6.6294, 9.4264, 8.8180]

The local thresholds are obtained by constraining qi ≤ 0.1. Due to
limitation in the number of datasets available with the same param-
eter values, a Monte Carlo approach cannot be adopted to generate
the exact ROC curves. Instead, using bootstrap, the 95% confidence
interval for the two ROCs corresponding to GLRT using RMLE and
unrestricted MLE are shown in Figure 5. Again, the confidence in-
terval obtained using RMLE is much higher than that obtained using
the unrestricted MLE demonstrating the superiority of the RMLE
based GLRT.

6. CONCLUSIONS

We considered a model based approach for distributed detection of
a nuclear radiaoactive source. An experiment-driven model was de-
veloped to represent the probability distribution of radioactive counts
measured by the sensors. The developed model was validated using a
statistical GoF test. Using this model, a distributed detection system
was designed. The local sensor thresholds were determined by con-
straining the local probability of false alarm and a GLRT based fu-
sion strategy was used. In implementing the GLRT, restricted range
MLE to estimate the unknown parameters under the H1 hypothesis
was proposed. The results presented using both simulated as well as
real datasets demonstrate the superiority of the RMLE based GLRT
approach.

Fig. 5. ROC using real dataset
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