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ABSTRACT

Direct imaging of exoplanets involves very low signal-to-noise ratio
data, that need to be carefully acquired and processed. Multi-band
devices enable the simultaneous record of images in different spec-
tral bands. They can be used either for spectroscopy purposes or to
improve detection capabilities.

This work aims at detecting a potential source, when the source
moves on a random background spatially and inter-spectrally corre-
lated. A hierarchic Bayesian model is derived to take into account
correlations and their randomness, and the high dynamic range in-
volved in potentially low signal to noise ratio data.

The point null hypothesis test is addressed using the posterior
distribution of the likelihood ratio. Its percentiles are computed us-
ing a simple Markov Chain Monte Carlo method. This algorithm is
illustrated using 1D simulated data of a dual band signal.

Index Terms— Bayes procedure, Signal detection, Object de-
tection, Speckle, Estimation, Astronomy

1. INTRODUCTION AND SUMMARY

Detection and spectrum measurement of exoplanets using ground-
based direct imaging are current driving motivations in astronomy.
These motivations are materialized by future planet finders such
as the Very Large Telescope (VLT) instrument SPHERE (Spectro-
Polarimetric High-Contrast Exoplanet REsearch, [1]). The expected
images are characterized by an intense background -due to the or-
bited star- highly contrasted both temporally and spatially, and a
potentially very low source intensity -the exoplanet of interest. The
background, caused by the orbited star, arises from the combination
of residual speckles from the turbulent atmosphere and uncorrected
by the adaptive optics system, and static or quasi-static ones from
the optical system aberrations. These aberrations being similar for
two close wavelengths, a solution to improve estimation/detection
performances is to acquire images simultaneously in different spec-
tral bands. The VLT SPHERE project will include this facility.
The source could be dectected by processing the simple difference
of properly rescaled images, as proposed in [2, 3], but differential
aberrations remain an important issue.

The purpose of this communication is to propose a detector
based on a Bayesian approach which relies on the extension of the
model used in [4] in order to take into account:

1. a spatial and inter-spectral correlation of the optical aberra-
tions (background). See for example [5] and included refer-
ences for a discussion on static and quasi-static speckles.

2. the high range of intensities of the exoplanet (source) that can
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be expected in the different bands, and their possible statisti-
cal dependence.

General prior distributions related to multivariate normal distri-
butions are defined for the unknown signal parameters and hyperpa-
rameters. Such a hierarchical model has physical motivations and
can be expected to make posterior inferences robust with respect to
the choice of the required hyperparameters values [6]. The nuisance
parameters are analytically marginalized out to obtain an analytical
expression of the joint distribution of the intensities in the different
channels.

In addition to the posterior distribution of the unknown source
intensities, a detection test is applied. It consists in the simple (null
intensity of the source in all channels) versus composite hypothesis
test. We choose the Bayesian detection test proposed in [7, 8] where
the authors advocate the use of the posterior distribution of the like-
lihood ratio rather than the common Bayes factor [9]. In order to
compute some point estimates of the intensities and the percentile of
the posterior of the likelihood ratio, a Markov Chain Monte Carlo
(MCMC) method is used.

2. HIERARCHICAL BAYESIAN MODEL

2.1. Likelihood

The dataset is represented by IV successive sets of L images, where
each image is represented by a M x 1 vector ¢¢(k), k =1... N and
¢ =1...L. M is the number of pixels in the image, L the number
of spectral channels and N the number of time exposures.

A precise statistical model for 4,(k) was studied in [4] in the
case of a single band. It involves a non-uniform background, a gen-
eral speckle model (that relies on a correlated Gaussian modeling of
the complex amplitude arising from the Central Limit Theorem) and
Poisson process. It was shown to lead under a high flux assumption
and after renormalization to a simple Gaussian model.

In order to increase the detection performance, it is important to
account at a given time k both for spatial and inter-channel corre-
lations. The spatial correlation arises from various phenomena like
low and high orders quasi-static aberrations, and the interspectral
correlation arises when two channels are acquired in wave-bands
close enough for the two backgrounds to be statistically related.

To account for both types of correlations without assuming that
the backgrounds in two channels are too simply related, we define
the LM x 1 vector z}, = (i1(k)%,...,ir(k)"). A direct extension
of the one channel model to the multi-channel case consists in as-
suming that, conditioned on some constant parameters, the images
are independent and described by:

ICASSP 2009



@lp, 3,m, Hi ~ N (Hin + p, X) M
with:
o pu' = (ul,. .., puh) where p, is the M x 1 vector denoting

the unknown background in the channel ¢. In our case, it
arises from the coronagraph, the static speckles, efc.

e 1 = (m,...,n.)" where 1 are the unknown intensities of
the source in the different channels. Those are the quantities

of interest.
e Hj isthe LM x L matrix
pi(k)  Oarsa Onrx1
Hi=| Omuxi po(k) Onrx1
Onmx1 Owmxa pr(k)

where p, (k) is the M x 1 vector representing the known in-
strumental response of the source at time £ in the channel ¢.

e Y is the unknown covariance matrix of size LM x LM ac-
counting for spatial and inter-spectral correlations. For ex-
ample, in the dual band case where L = 2, the main diagonal
band of ¥ (ie the terms indexed by {(i,1), (4,7 £ 1), (4,7 £
2),...}) account for the spatial correlation, and the middle
off-diagonal (with indices {(i,i + M), (¢, + (M +1)),...})
account for the inter-spectral correlations.

Note that when the source is moving with respect to the back-
ground, ie when there exists p,(k) # p,(k’), the x, are not identi-
cally distributed. We denote the dataset as =* = (%, ..., zl).

2.2. Priors for the source intensities

Due to the high dynamics involved in possible low signal to noise
ratio cases, and due to the inherent wide range of sources inten-
sities [10], the distribution of m has to spread out on several or-
der of magnitudes. This requirement appears in astronomy through
the common use of a “magnitude” of objects, defined as mag =
—2.51og(F/Fu) where F is the electromagnetic flux of the object,
and Fy is the flux of a reference object. Error bars on the intensities
infered are also commonly given in the magnitude scale [11].

It is therefore natural to assume that (In 71, . . ., Innz)" is jointly
gaussian. This so-called multivariate lognormal distribution [12] de-
scribes high dynamics signals, has a positive support, is proper, and
is described with few parameters that are furthermore directly related
to the moments of the magnitudes. It takes the general form

Inn —m)'B~
p(nim, B) (Inm )

|B| Hxﬁnz ( 2
)

where m = E[lnn] = (E[lnm],...,E[lnn.])", B
H(.) is the {0, 1} valued Heaviside function.

= cov[ln 7] and

2.3. Hyperparameters priors

The nuisance parameters of the likelihood and the prior are generally
unknown or subject to uncertainties. This issue can be adressed by
assuming they are random, described by some underlying distribu-
tion and finally marginalized out, leading to more robust inferences
[6]. The integration is in general numerically too time-consuming,
but can be performed analytically using conjugate distributions.
Both the likelihood (1) and the prior (2) are related to a Normal
distribution, the first with a time varying component and the second
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Yinn — m)) and Ca(n) =

through a log-function. The Normal - inverse Wishart distribution,
conjugate for the mean and covariance of a Normal distribution [13],
is still conjugate for the nuisance parameters involved in both cases.

2.3.1. Background

We consider a Normal - inverse Wishart distribution for (4, 3):

/’L|27/~1‘07)‘0 NN(/"‘O7)‘OE) 3
%S0, v ~ Wi (So,v) )

where Yo is assumed to be definite positive, and satisfies E[X] =
(v— LM —1)"'%,.

The present case differs from the standard one [13] because of
the motion of the source: although deterministic, Hxn that con-
tributes to the mean value is time-varying and involves the variable
of interest. Eqgs. (3,4) imply:

p(“’: 2'“07)\07V) = (QW)iLM/Q‘/\Oz‘il/Z
x etr( - KE_I(M = ko) (B — l‘o)t>

v/2 L
%] |Z|7%etr< - %Z*lzo) )

V“M—

2—=2 T LM (l/ / 2)
where etr(M) = exp(trace(M)). Combining this equation with the
likelihood (1) we obtain:

)
(271') _ LM(N+1

I/LAI

9 B\

p(x,p, XN, po, Ao, v) = o/

FLA[(V/Q)

w(f§z*ﬁb+Aw»> ©)

1/+N+L1\/I+2

x |3]”
where A(u) is defined by:

A(p) = Z(N —xp + Hin)(p — xk + Hkn)t

b o) o)’

The matrix A(u) can be rewritten as a “quadratic form” in y:

A(p) = (N + X5 ) (e — h(n)) (1 — h(n))" + Cu(n) )

with h(n) = ﬁ Z (xkp — Him) + ﬁﬂo ®)
Z(wk — Hyn)(zx — Hin)' + )\%Noﬂé

= (N + X Hh(n)h(n)" ©)

Substitution of (7) into (6) shows that the prior (5) is conjugate
to (1). Integration with respect to p leads to:

(2 )_ LM(N—1)

s 2 v
p(z, Xn) = M [Zol /2
(N)\o—‘rl) 2 FLJ\/I(V/Q)

|2|7V+N+2L]u+letr( . 3271(20 + C:c(n)))

and integration with respect to X finally gives:

el = 23T T () )
(Nxo -+ Toa(5) [So+ Calm)] 5
(10)
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Fig. 1. Contour levels of the prior distribution, shown in a log view.

2.3.2. Intensities

The same way, we consider a Normal - inverse Wishart distribution
for the hyperparameters (m, B) which is conjugate to the prior (2):

m‘mo,CO,BNN(mQ,CoB) (11)
B|Bo,w ~ W; ' (Bo,w) (12)

A similar calculation as for the likelihood is performed. The
marginalized prior is finally given by:

(m(co+ 1)~ % Tp (25) |Bol % TIE_, H(ne)

p(n) =

H;:l e

co+1

13)

An example is given in Fig. 1 with L = 2, mo = (4,4)",
co = 0.99, By = (w — 3)E[B] where we fix E[B1,1] = E[Ba,2] =
o2 and E[B1,2] = po? with 0 = 10 and p = 0.8. The choice
of w can be made upon the variance on the diagonal terms of B:

2
var(B;;) = %. We choose w = 4. The choice of this
variables set was motivated by a rather conservative view with little
correlation assumed on 77 and 72 and a quite large uncertainty about
the different parameters. In practice, parameters can be chosen to fit
the prior of physical models such as [10].

Despite the fact that the prior (13) tends to co as 7 — 0, this
prior can be shown to be proper using standard calculations on im-
proper integrals. Note that the standard scale invariant distribution
[1;_, m; "H(ne) also tends to oo as 7 — 0 but is improper, which
could be inconvenient for example if the Bayes factor was retained
for the detection [6, 9].

The final posterior distribution is computed from (10,13):

p(n|z) o p(x|n)p(n) (14)

3. DETECTION: POINT NULL HYPOTHESIS TEST

The detection test consists in the comparison of the simple hypothe-
sis 17 = 0 and the more general composite hypothesis, namely:
Ho:mn=0 Hy:ne>0, W (15)
A common approach consists in using the usual Bayes factor
[9]. In our case the null hypothesis is supported by a set of mea-
sure 0. This case has been extensively discussed, both on theoretical
grounds and case studies: see [7, 9, 14] and included references. In
order not to stress the sensitivity of the detector with respect to the
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Fig. 2. Up: band ¢ = 1. Down: band ¢ = 2. Left: source profile
nep, (k) superimposed for all £ = 1, ..., 10. Right, continuous line:
data x, for £ = 10 (first half of the vector @ 1o for £ = 1 and second
half for ¢ = 2). Right, dashed line: n¢p,(10).

choice of the prior, we retain the approach used in [8]. It consists
in rejecting Hy if the probability that “the likelihood ratio (LR) of
Hy over Hi is less than ¢ is greater than some p value, where the
likelihood is given under both hypotheses by Eq. (10):

Hy rejected if Pr{LR(n) < |z} >p (16)
where LR(n) = p(@ln = 0) (17)
p(z(n)

In practice, this can be done by sampling the posterior distri-
bution (14) as ') ~ p(n|x) using a MCMC sampling method
and computing the empirical posterior cumulative distribution of
LR(n™) defined by Fprj+(¢) = Pr{LR(n) < ¢|z}.

4. SIMULATIONS

The hierarchical model derived in section 2 is illustrated using a sim-
ple 1D dataset in the dual band case L. = 2, simulated from the
model (1) with parameters M = 15, N = 10, n = (20, 30)".

e The source profile p,(k) is identical for all £ and k, aside
from a global motion with almost constant speed. The profile
has a spatial support of 3 pixels equal to (0.2,0.5,0.3)",

e the background is uniform and identical for both bands, with
w(i) =100Vi =1,...,2M,
e 3 is Toeplitz with first column vector v = 500w with u(1) =
1, u(2) = 0.3, u(3) = 0.05, u(M + 1) = 0.6, u(M +2) =
0.2 and all other components are 0.
Fig. 2 illustrates a realization of such a dataset. To account for

“imperfect” assumptions, the following likelihood hyperparameters
are chosen for Eq. (10):

e 1o(i) = 500Vi = 1,...,2M: the background is assumed to
be uniform but with a wrong constant value,

e )\o = 2and v = 2M: reasonable weight is given to the data,

e >y = 4I: no correlation is assumed, neither spatially nor
between the two bands,

The consecutive likelihood function is shown on the left image
of Fig. 3. Its product with the prior shown in a log view on Fig. 1
gives the posterior distribution shown on the right image of Fig. 3.
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Fig. 3. Left: Contour levels of the likelihood (10). Right: corre-
sponding posterior distribution under the prior of Fig. 1.
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Due to the complexity of this posterior distribution p(n1, 72|x)
given in Eq. (14), appropriate simulation methods such as MCMC
methods [15] are required for estimation and detection. Unfortu-
nately, because of the presence of a determinant that cannot be sim-
plified, the posterior cannot be re-expressed using conditional dis-
tributions, as necessary for the Gibbs sampler [15]. In our case, the
slice sampling algorithm which has satisfactory convergence proper-
ties will be used. Fig. 4 shows a part of the Markov Chain, computed
from the posterior distribution shown in the previous figure.

The chain can be first used to make inferences about the source
intensities: the Maximum A Posteriori is 7, 4p = (27.5,31.4)",
the Posterior Mean is 7o, = (27.3,31.1)" (with true values n =
(20, 30)") and the Standard Deviation of the marginal posterior dis-
tribution of each intensity is (12.2,10.8)", which is quite large but
expected from the conservative hyperparameters chosen.

The chain is then used for the detection test (16). Fig. 5 shows
the empirical posterior cumulative distribution of LR(n). It shows
that the probability that p(xz|Ho) < 100 p(x|H:,n) is slightly
above 0.9. The Hy hypothesis can be reasonably rejected.

This algorithm has been applied on several datasets generated
using very broad ranges of parameters, and under hyperparameters
more or less in adequation with the data. All the cases considered
gave satisfactory results with no totally counterintuitive conclusion.

5. CONCLUSION

The hierarchical bayesian model presented in this communication
opens large possibilities for detection and estimation purpose by
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Fig. 5. Posterior probability that Hy is rejected if LR(n) < C.

e taking into account some correlation in the data, without hav-
ing to make too precise estimates neither of the covariance
matrix nor of the background,

e modeling in a flexible form the prior of n using its statistical
properties.

The next step consists in generalizing the likelihood by allow-
ing a time correlation, in order to take into account the presence of
quasi-static speckles. For continuous and symmetry issues, the use
of independent and redundant blocks of data should be avoided. The
treatment of this issue therefore requires a quite different approach.
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