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ABSTRACT

This paper studies compressed sensing for the recovery of

non-negative sparse vectors from a smaller number of mea-

surements than the ambient dimension of the unknown vector.

We focus on measurement matrices that are sparse, i.e., have

only a constant number of nonzero (and non-negative) entries

in each column. For such measurement matrices we give a

simple necessary and sufficient condition for l1 optimization

to successfully recover the unknown vector. Using a sim-

ple “perturbation” to the adjacency matrix of an unbalanced

expander, we obtain simple closed form expressions for the

threshold relating the ambient dimension n, number of mea-

surements m and sparsity level k, for which l1 optimization

is successful with overwhelming probability. Simulation re-

sults suggest that the theoretical thresholds are fairly tight and

demonstrate that the “perturbations” significantly improve the

performance over a direct use of the adjacency matrix of an

expander graph.

Index Terms— compressed sensing, expander graph,

non-negative vector, l1 optimization

1. INTRODUCTION

Recently, expander graphs have been studied in the context of

compressed sensing [5], [6], [7], [8],[10]. The rationale is that

the adjacency matrix of an unbalanced expander graph can be

used as the measurement matrix A in compressed sensing.

This is for several reasons. First, the resulting measurement

matrices are very sparse and simple in contrast to random or-

thoprojectors or other suggested structures. Therefore in ap-

plications where measurement is costly (like DNA micro ar-

rays) this plays a crucial role([11]). Second, there are specific

algorithms apart from linear programming that can be applied

to expander graphs for the recovery of general sparse vectors.

One such fast recovery algorithm can be found in [7] and its

modified version in [8]. Finally, unlike random measurement

matrices (such as Gaussian or Bernoulli), which only guaran-

tee the recovery of sparse vectors with high probability, ex-

pander graphs give deterministic guarantees (see, e.g., [7],

which gives a deterministic guarantee for the fast algorithm

proposed, and [5], which shows that the adjacency matrix of

an expander graph satisfies a so-called Restricted Isometry

Property(RIP) which guarantees that linear programming can

be used to recover sparse enough vectors).

However, it turns out that the RIP is only a sufficient con-

dition. Linear programming is effective if and only if a cer-

tain condition on the null space of A holds. More precisely,

if for any vector w in the null space of A, the sum of the ab-

solute values of any k elements of w is less that the sum of

the absolute values of the rest of the elements, then the solu-

tion to min ||x||0 subject to Ax = y can always be obtained

by solving min ||x||1 subject to Ax = y, provided x is k-

sparse.1 This condition is stated in the work of Donoho as

the k-neighborly polytope property of A, [1], and in the work

of Candes et. al. as the uncertainty principle ,[3]. Donoho

et. al. also have been able to show the validity of this condi-

tion with overwhelming probability for random i.i.d Gaussian

matrices and are therefore able to compute fairly tight thresh-

olds on when linear-programming-based compressed sensing

works [2]. The first analysis of the null space property for

expender graphs has been done by Indyk. He shows that ev-

ery (2k,ε) expander graph with ε ≤ 1
6 has this null space

property, [6]. In fact, he shows that for every vector in the

null space of the adjacency matrix of a (2k,ε) unbalanced ex-

pander, the absolute sum of every k elements is less than or

equal to 2ε
1−4ε the absolute sum of the rest. Using Theorem

1 of [9], which is a generalization of the null space property

theorem for the recovery of approximately sparse signals, In-

dyk’s result gives an upper bound on the error when linear

programming is used to recover approximately k-sparse vec-

tors using expander graph measurements.

Unlike Gaussian matrices, where reasonably sharp bounds

on the thresholds which guarantee linear programming to re-

1Here ‖ · ‖0 represents the number of non-zero entries in its argument

vector and ‖ · ‖1 is the standard l1-norm.
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cover sparse signals have been obtained, such sharp bounds

do not exist for expander-graph-based measurements. This

is the main focus of the current paper. However, we shall

focus on the special case where the k-sparse vector has non-

negative entries. This is an important special case that arises

in many applications. It turns out that, due to the additional

non-negativity constraint, one can say a lot more and, in fact,

one can recover “less sparse” signals in this case. This non-

negative case (albeit for Gaussian measurement matrices) has

also been studied in [4].

The remainder of this paper is organized as follows. In

Section 2 we formulate the problem. Then in section 3 we

state the main theorem that relates the success of linear pro-

gramming recovery in terms of a null space characterization.

We define the new concept of complete rank and relate it

to unbalanced expanders and also to the compressed sens-

ing problem. Section 4 is dedicated to a probabilistic ap-

proach based on which we prove the existence of a class of

desired expanders and consequently sparse matrices with pro-

portional complete rank. In Section 5 we provide a weak con-

dition and achieve a weak bound below which l1-optimization

is successful with overwhelming probability. Finally we wrap

up the paper with simulation results.

2. PROBLEM FORMULATION

The goal in compressed sensing is to recover a sparse vec-

tor from a set of (linear) under-determined system of equa-

tions. In many real world applications the original data vector

is nonnegative. The problem of nonnegative input vectors re-

covery is as following:

min
Ax=y,x≥0

||x||0 (1)

where Am×n and ym×1 are respectively the measurement ma-

trix and observation vector. Although (1) is an NP-hard prob-

lem, Donoho and Tanner have shown in [4] that for a class of

matrices A maintaining a so-called outwardly k-neighborly

property and x being at most k-sparse, the solution to (1) is

unique and can be recovered via the following linear program-

ming problem:

min
Ax=y,x≥0

||x||1 (2)

They also show that i.i.d Gaussian random m × n matrices

with m = n/2 are outwardly m/8-neighborly with high

probability, and thus allow the recovery of n/16 sparse vec-

tors x via linear programming. They further define a weak
neighborly notion, based upon which they show that the same

Gaussian random matrices will allow the recovery of almost
all 0.558m sparse vectors x via l1optimization for sufficiently

large n.

In this paper, we seek the answer to a similar question

when our measurement matrix is the adjacency matrix of an

unbalanced bipartite graph with constant left degree d. Now

the aim is to analyze the outwardly neighborly conditions for

this class of matrices and come up with sparse structures that

allow the recovery of vectors with sparsity proportional to the

number of equations.

3. NULL SPACE CHARACTERIZATION AND
COMPLETE RANK

We first state an equivalent version of the outwardly neigh-

borly condition of [4], which has a much more mundane in-

terpretation for the special case of regular bipartite graphs.

Theorem 3.1. integer. These two statements are equivalent:

1. Whenever x0 is a solution to (1) with at most k nonzero
elements, x0 is also the unique solution of (2).

2. For every vector w in the null space of A , and ev-
ery index set S ⊂ {1, 2, ..., n} with |S| = k such
that wSc is a non-negative vector, the following holds:∑n

i=1 wi > 0.2

let A be a nonnegative m × n matrix and k < n/2, a

positive We refer to the latter statement as non-negative null
space property.

Proof. Similar to the proof of Theorem 1 of [9] with the ad-

ditional notice that x1 − x0 is nonnegative on Sc.

Now let’s assume that A is the adjacency matrix of a bi-

partite graph with left vertex size n, right vertex size m and

left degree d. In other words A is a 0− 1 (m×n) matrix with

exactly d ones in each column. The following lemma holds

for any such matrix.

Lemma 3.1. For any vector w in the null space of A, if w≥0

is the non-negative part of w and w<0 is the negative portion
of w then ||w≥0||1 = ||w<0||1

Proof. Wlog let’s assume w =
[

w≥0

w<0

]
. The proof comes

from the fact that:

∥∥∥∥A

[
w≥0

0

]∥∥∥∥
1

= d

∥∥∥∥
[

w≥0

0

]∥∥∥∥
1

and∥∥∥∥A

[
0

w<0

]∥∥∥∥
1

= d

∥∥∥∥
[

0
w<0

]∥∥∥∥
1

.

Theorem 3.2. For a 0-1 matrix Am×n with exactly d 1’s in
each column, the following two statements are equivalent:

1. Whenever x0 is a solution to (1) with at most k nonzero
elements, x0 is also the unique solution of (2).

2. Every vector w in the null space of A has at least k
negative elements.

2a sufficient condition similar to that of [9] would be ‖wS‖1 ≤ ‖wc
S‖1.
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Proof. Readily follows from Theorem 3.1 and Lemma 3.1.

Our goal is to prove the existence of bipartite graphs with

the above null space property. We begin with two definitions.

Definition 3.1. For a matrix Am×n we define the Complete

Rank of A (denoted by Cr(A)) to be the maximum value r0

for which every r0 columns of A are linear independent.

Definition 3.2. A left d-regular bipartite graph with X and Y
the set of left and right vertices(|X| = n,|Y | = m), is called
a (k,ε) unbalanced expander if for every S ⊂ X with |S| ≤ k,
the following holds: |N(S)| ≥ kd(1 − ε), where N(S) is the
set of neighbors of S in Y .

The following lemma is almost obvious:

Lemma 3.2. Every left regular bipartite graph (X ,Y ,d) with
adjacency matrix A is a (Cr(A), d−1

d ) expander. Conse-
quently, for every S ⊂ X : |N(S)| > min(|S|, Cr(A)).

The notion of complete rank (also known as Kruskal rank

in linear algebra) is tightly related to the expansion property.

It is also related to the null space characterization we are

shooting for.

Theorem 3.3. If Am×n is the adjacency matrix of a left reg-
ular bipartite graph, and w is a vector in its null space, then
the number of negative elements of w is at least Cr(A)

d .

Proof. Let S+ be the set of vertices in X corresponding to

the positive elements of w, and likewise S− be set of vertices

corresponding to the negative elements. Let S = S+ ∪ S−.

Clearly N(S+) = N(S−) = N(S), since otherwise there

is a vertex in Y connected to exactly one of S+ and S− and

this contradicts the fact that Aw = 0. Besides, |S| ≥ Cr(A).
Therefore

d|S−| ≥ |N(S−)| = |N(S)| > Cr(A).

The question is whether for n and m = βn large there ex-

ist matrices Am×n with d (constant) 1’s in each column such

that Cr(A) is proportional to n? Furthermore, what is the

maximum achievable value of
Cr(A)

nd ? This is a very difficult

question to address. However, it turns out to be much eas-

ier if we allow for a small perturbation of the nonzero entries

of A, as shown in the next lemma (whose proof we omit for

brevity).

Lemma 3.3. For a matrix A ∈ R
m×n which is the adja-

cency matrix of a bipartite left d-regular graph, if the subma-
trix formed by any r0 columns of A has at least r0 nonzero
rows, then it is possible to add a slight perturbation to each
nonzero entry of A and get Ã with Cr(Ã) ≥ r0. Furthermore,
perturbations can be done in a way that the sum of each col-
umn remains a constant d.
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Fig. 1: maximum achievable ratio of μ
d for different values of β.

After modifying A based on perturbations described

above, Theorem 3.1, Lemma 3.1 and Theorems 3.2 and

3.3 all continue to hold for this class of matrices Ã. Note that

matrix A in Lemma 3.3 is nothing but the adjacency matrix

of a (r0,d−1
d ) unbalanced expander graph. Therefore what we

really care about is to construct a (r0,d−1
d ) expander with r0

nd
as large as possible. We now use the probabilistic method to

show that the desired (r0,d−1
d ) expanders with r0 a fraction

of n exist.

4. SPARSE MATRICES WITH COMPLETE RANK
PROPORTIONAL TO DIMENSION

For fixed values of n > m > r0 and d we are interested in

the following question: Does there exist a (r0,d−1
d ) expander

with constant left degree d? Using the probabilistic method,

we are able to show the following result.

Theorem 4.1. For sufficiently large n, with m = βn and
r0 = μn, there exists a bipartite graph with left vertex size
n and right size m which is a (r0,

d−1
d ) expander, if d >

H(μ)+βH( μ
β )

μ log( β
μ )

, where H(x) is the entropy function defined as

H(x) = x log2
1
x

+ (1 − x) log2
1

1−x

Figure 1 illustrates the maximum achievable ratio μ
d for

different values of β based on Theorem 4.1

5. WEAK BOUND

Another very important question is how large can k be so that

almost all k sparse vectors that are the solutions to (1) will be

recovered via (2). This will be addressed in this section.

Theorem 5.1. let x0 ∈ (R+)n be fixed and y = Ax0. Then
the solution x of (2) will be identical to x0 if and only if there
exists no w in the null space of A such that wSc is nonnegative
and ||wSc ||1 ≤ ||wS ||1, where S is the support set of x0.

2891



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

β

sp
ar

si
ty

 ra
tio

 k
/n

Strong Bound
Weak Bound

Fig. 2: Comparison of weak and strong bound on k
n .

Proof. Very similar to the proof of Theorem 3.1

Corollary 5.1. Let A be the adjacency matrix of a bipartite
graph with left constant degree, x0 be a fixed nonnegative vec-
tor and y = Ax0. Then the solution x of (2) will be identical
to x0 if and only if there exists no w in the null space of A
such that wSc is a nonnegative vector, where S is the support
set of x0.

Proof. Directly from Theorem 5.1 and Lemma 3.1.

Using these results, an application of the probabilistic

method now allows the following.

Theorem 5.2. Let k = γm. For n large enough, there exists
a nonnegative sparse matrix Am×n with each column hav-
ing d nonzero entries that sum to d, such that for almost all
S ⊂ {1, 2, ..., n}, |S| = k, there exists no w in the null
space of A for which wSc is a nonnegative vector, provided

d >
H(μ)+βH( μ

β )

μ log( β
μ )

and 1 − exp(−γd) ≤ μ
β .

Figure 2 illustrates the weak bound on k
n as a function of

β = m
n from Theorem 5.2.

6. SIMULATIONS

We generated random m×n matrices A with n = 2m = 500,

and d = 3 1’s in each column. We then multiplied random

sparse vectors with different sparsity levels by A, and tried

recovering them via the linear programming of (2). Next we

added the perturbations described in section 3 to A and ap-

plied the same sparse vectors to compare the recovery per-

centage in the two cases. This process was repeated for a few

generations of A and the improvements we obtained is illus-

trated in Figure 6. 100 samples were tried for each sparsity

level.
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