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ABSTRACT

We consider compressed sensing of block-sparse signals, i.e.,
sparse signals that have nonzero coefficients occurring in clusters.
Based on an uncertainty relation for block-sparse signals, we de-
fine a block-coherence measure and show that a block-version of the
orthogonal matching pursuit algorithm recovers block k-sparse sig-
nals in no more than k steps if the block-coherence is sufficiently
small. The same condition on block-sparsity is shown to guarantee
successful recovery through a mixed �2/�1 optimization approach.
The significance of the results lies in the fact that making explicit
use of block-sparsity can yield better reconstruction properties than
treating the signal as being sparse in the conventional sense, thereby
ignoring the additional structure in the problem.

Index Terms— Block-sparsity, coherence, uncertainty relations

1. INTRODUCTION

We consider compressed sensing [1, 2] of sparse signals that exhibit
additional structure in the form of the nonzero coefficients occurring
in clusters. It is natural to ask whether explicitly taking this block-
sparsity into account yields improvements over treating the signal
as a conventional sparse signal. This problem was treated in [3]
where a mixed �2/�1-norm algorithm for recovering block-sparse
signals was introduced, and shown to guarantee robust recovery un-
der a block restricted isometry property. For the more general set-
ting of model-based compressed sensing (including block-sparsity
as a special case) it was shown in [4] that simple modifications of
the CoSaMP algorithm [5] yield recovery methods with provable ro-
bustness properties.

The focus of the present paper is on the notion of coherence
for block-sparse signals, i.e., block-coherence, and can be seen as
extending the program laid out in [6, 7] to the block-sparse case.
We begin by establishing an uncertainty relation for block-sparse
signals and show how a block-coherence measure occurs naturally
in this uncertainty relation. We then introduce a block version of
the orthogonal matching pursuit algorithm (BOMP) and find a suf-
ficient condition on block-coherence to guarantee recovery of block
k-sparse signals through BOMP in no more than k steps. The same
condition on block-coherence is shown to guarantee successful re-
covery through the mixed �2/�1 optimization approach, described in
[3, 8]. Our results are akin to a sufficient condition on conventional
coherence developed in [6] that guarantees recovery through OMP
or �1-optimization.

Notation. Throughout the paper, we denote vectors in C
N by

boldface lowercase letters, e.g., x, and matrices by boldface upper-
case letters, e.g., A. The identity matrix is written as I or Id when
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the dimension is not clear from the context. Given a matrix A, AT

and AH are its transpose and conjugate transpose, respectively, A†

is the pseudo inverse, R(A) denotes its range space, Ai,j is the el-
ement in the ith row and jth column, and a� denotes its �th column.
The �th element of a vector x is denoted by x�. The standard Eu-
clidean norm is ‖x‖2 =

√
xHx, ‖x‖1 =

P
� |x�| is the �1-norm,

‖x‖∞ = max� |x�| is the �∞-norm, and ‖x‖0 designates the num-
ber of nonzero entries in x. The Kronecker product of the matrices
A and B is written as A ⊗ B. The spectral radius of A is denoted
by ρ(A) = λ

1/2
max(A

HA), where λmax(B) is the largest eigenvalue
of the positive-semidefinite matrix B.

2. BLOCK-SPARSITY

We consider the problem of representing a vector y ∈ C
L in a given

dictionary D of size L × N with L < N , so that

y = Dx (1)

for a coefficient vector x ∈ C
N . We require x to be block-sparse,

where, throughout the paper, blocks are always assumed to be of
length d. To define block-sparsity, we view x as a concatenation of
blocks (of length d) with x[�] denoting the �th sub-block, i.e.,

x = [x1 . . . xd| {z }
xT [1]

xd+1 . . . x2d| {z }
xT [2]

. . . xN−d+1 . . . xN| {z }
xT [M]

]T (2)

with N = Md. We further assume that L = Rd with R integer.
A vector x ∈ C

N is called block k-sparse if x[�] has nonzero Eu-
clidean norm for at most k indices �. When d = 1, block-sparsity
reduces to conventional sparsity as defined in [1, 2]. Denoting

‖x‖2,0 =
MX

�=1

I(‖x[�]‖2 > 0) (3)

where I(‖x[�]‖2 > 0) = 1 if ‖x[�]‖2 > 0 and 0 otherwise, a block
k-sparse vector x is defined as a vector that satisfies ‖x‖2,0 ≤ k. In
the remainder of the paper conventional sparsity will be referred to
simply as sparsity, in contrast to block-sparsity.

Problem statement. Our goal is to provide conditions on the
dictionary D ensuring that the block-sparse vector x can be recon-
structed from measurements of the form (1) through computation-
ally efficient algorithms. Our approach is largely based on [6, 9]
(and the mathematical techniques used therein) where equivalent re-
sults are provided for the sparse case. The results in [6, 9] are stated
in terms of the dictionary coherence. Therefore, as a first step in
our development, we extend the conventional coherence measure to
block-sparsity by defining block-coherence. Before introducing the
corresponding definition, we cite the following proposition from [3].
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Proposition 1. The representation in (1) is unique if and only if
Dg �= 0 for every g �= 0 that is block 2k-sparse.

Similarly to (2), we can represent D as a concatenation of
column-blocks D[�] of size L × d:

D = [d1 . . . dd| {z }
D[1]

dd+1 . . .d2d| {z }
D[2]

. . . dN−d+1 . . . dN| {z }
D[M]

]. (4)

Since from Proposition 1 the columns of D[�] are linearly indepen-
dent for all �, we may write D[�] = A[�]W� where A[�] consists
of orthonormal columns that span R(D[�]) and W� is invertible.
Denoting by A the L × N matrix with blocks A[�], and by W the
N × N block-diagonal matrix with blocks W�, we conclude that
D = AW. Since W is block-diagonal and invertible, c = Wx is
block-sparse with the same block-sparsity level as x. Therefore, in
the sequel, we assume, without loss of generality, that D consists of
orthonormal blocks, i.e., DH [�]D[�] = Id. We further assume that
the dictionaries satisfy the condition of Proposition 1.

Block-coherence. We define the block-coherence of D as

μB = max
�,r �=�

1

d
ρ(M[�, r]) with M[�, r] = D

H [�]D[r]. (5)

Note that M[�, r] is the (�, r)th d × d block of the N × N matrix
M = DHD. It is easy to see that the definition in (5) is invariant to
the choice of orthonormal basis D[�] for R(D[�]). This is because
ρ(M[�, r]) = ρ(UH

� M[�, r]Ur). When d = 1, μB reduces to the
conventional definition of coherence [10, 9, 6]

μ = max
�,r �=�

|dH
� dr|. (6)

In the remainder of the paper conventional coherence will be referred
to simply as coherence, in contrast to block-coherence.

Proposition 2. The block-coherence μB satisfies 0 ≤ μB ≤ 1.

Proof. Clearly μB ≥ 0. To prove that μB ≤ 1, note that ρ(A) ≤
‖A‖, where ‖A‖ is any matrix norm. In particular, if A is a d × d
matrix, then

ρ(A) ≤ max
j

X
i

|Ai,j | ≤ dmax
i,j

|Ai,j |. (7)

In our case, A = M[�, r]. Since the columns of D are normalized,
all the elements of M[�, r] have absolute value smaller than or equal
to 1, so that from (7), ρ(M[�, r]) ≤ d, and hence μB ≤ 1.

It is interesting to compare μB with the coherence μ defined in
(6) for the same dictionary D.

Proposition 3. For any dictionary D, we have μB ≤ μ.

The proof follows immediately from (7).

3. UNCERTAINTY RELATION FOR BLOCK-SPARSITY

We next show how the block-coherence μB defined above naturally
appears in an uncertainty relation for block-sparse signals, general-
izing the corresponding result for the sparse case [9].

The conventional uncertainty relation is concerned with pairs of
representations of a vector x ∈ C

N in two different orthonormal
bases for C

N : {φ�, 1 ≤ � ≤ N} and {ψ�, 1 ≤ � ≤ N} [10, 9].

Any vector x ∈ C
N can be expanded uniquely in terms of each one

of these bases according to:

x =

NX
�=1

a�φ� =

NX
�=1

b�ψ�. (8)

The uncertainty relation sets limits on the sparsity of the decompo-
sitions (8) for any x ∈ C

N . Specifically, denoting A = ‖a‖0 and
B = ‖b‖0, it is shown in [9] that

1

2
(A + B) ≥

√
AB ≥ 1

μ(Φ,Ψ)
(9)

where μ(Φ,Ψ) is the coherence between Φ and Ψ, defined by

μ(Φ,Ψ) = max
�,r

|φH
� ψr|. (10)

In [10] it is shown that 1/
√

N ≤ μ(Φ,Ψ) ≤ 1.
We now develop an uncertainty relation for block-sparse decom-

positions, analogous to (9). Our result is equivalent to (9) with A and
B replaced by block-sparsity levels as defined in (3) and μ(Φ,Ψ)
replaced by the block-coherence between the orthonormal bases con-
sidered, which is defined below in (13).

Theorem 1. [11] Let Φ, Ψ be two unitary matrices with L × d
blocks {Φ[�], Ψ[�], 1 ≤ � ≤ M} and let x ∈ C

N satisfy

x =
MX

�=1

Φ[�]a[�] =
MX

�=1

Ψ[�]b[�]. (11)

Let A = ‖a‖2,0 and B = ‖b‖2,0. Then,

1

2
(A + B) ≥

√
AB ≥ 1

dμB(Φ,Ψ)
(12)

where

μB(Φ,Ψ) = max
�,r

1

d
ρ(ΦH [�]Ψ[r]). (13)

It can easily be shown that for D consisting of the orthonormal
bases Φ and Ψ, i.e., D = [Φ Ψ], we have μB(Φ,Ψ) = μB, where
μB is as defined in (5) and associated with D = [Φ Ψ].

The bound provided by Theorem 1 can be tighter than that ob-
tained by applying the conventional uncertainty relation (9) to the
block-sparse case. This can be seen by noting that ‖a‖0 ≤ d‖a‖2,0,
‖b‖0 ≤ d‖b‖2,0, and using (9) to obtainp

‖a‖2,0‖b‖2,0 ≥ 1

dμ
. (14)

Since μB ≤ μ, this bound can be looser than (12).

3.1. Block-incoherent dictionaries

As already noted, in the sparse case (i.e., d = 1) for any two or-
thonormal bases Φ and Ψ, we have μ ≥ 1/

√
N . We next show

that the block-coherence satisfies a similar inequality, namely μB ≥
1/

√
dN . Evidently, the lower bound on μ is

√
d times larger than

that on μB. To prove the lower bound on μB, let Φ and Ψ denote
two orthonormal bases for C

N and let A = ΦHΨ where A[�, r]
stands for the (�, r)th d × d block of A. With M = N/d, we have

M2μ2
B ≥

MX
�=1

MX
r=1

1

d2
λmax(A

H [�, r]A[�, r])

≥ 1

d2
λmax

 
MX

�=1

MX
r=1

A
H [�, r]A[�, r]

!
. (15)

2886



Now, it holds that

MX
�=1

MX
r=1

A
H [�, r]A[�, r] =

MX
r=1

Ψ
H [r]

 
MX

�=1

Φ[�]ΦH [�]

!
Ψ[r].

(16)
Since Φ consists of orthonormal columns, we haveP

� Φ[�]ΦH [�] = ΦΦH = IL. Using the fact that Ψ[r] consists
of orthonormal columns for all r, we have ΨH [r]Ψ[r] = Id.
Therefore, (15) becomes

μ2
B ≥ 1

Md2
=

1

dN
(17)

which concludes the proof.
We now construct a pair of bases that achieves the lower bound

on μB and therefore has the smallest possible block-coherence.
Let F be the DFT matrix of size M = N/d with F�,r =

(1/
√

M) exp(j2π�r/M). Define Φ = IN and

Ψ = F ⊗ Ud (18)

where Ud is an arbitrary d × d unitary matrix. For this choice,
ΦH [�]Ψ[r] = F�,rUd. Since ρ(Ud) = 1 and |F�,r| = 1/

√
M ,

μB =
1

d
√

M
=

1√
dN

. (19)

When d = 1, this basis pair reduces to the spike-Fourier pair which
is well known to be maximally incoherent [10].

4. EFFICIENT RECOVERY ALGORITHMS

We now give operational meaning to block-coherence by showing
that if it is small enough, then a block-sparse signal x can be re-
covered from y = Dx using computationally efficient algorithms.
We consider two different methods: the mixed �2/�1 optimization
program proposed in [3],

min
x

MX
�=1

‖x[�]‖2 s. t. y = Dx, (20)

and an extension of the orthogonal matching pursuit (OMP) algo-
rithm [12] to the block-sparse case described below and termed
BOMP. We then show that both methods recover the correct block-
sparse x as long as μB associated with D is small enough.

4.1. Block OMP

The BOMP algorithm is similar in spirit to conventional OMP, and
can serve as a computationally attractive alternative to (20).

The algorithm begins by initializing the residual as r0 = y. At
the �th stage (� ≥ 1) we choose the subspace that is best matched to
r�−1 according to:

i� = arg max
i

‖DH [i]r�−1‖2. (21)

Once the index i� is chosen, we find the optimal coefficients by com-
puting x�[i] as the solution to

min

‚‚‚‚‚y −
X
i∈I

D[i]x�[i]

‚‚‚‚‚
2

2

. (22)

Here I is the set of chosen indices ij , 1 ≤ j ≤ �. The residual is
then updated as

r� = y −
X
i∈I

D[i]x�[i]. (23)

4.2. Recovery conditions

Our main result, summarized in Theorem 3 below, is that any block
k-sparse vector x can be recovered from measurements y = Dx

using either the BOMP algorithm or (20) if the block-coherence
satisfies kd < (μ−1

B + d)/2. If x was treated as a (conventional)
kd-sparse vector without exploiting knowledge of the block-sparse
structure, a sufficient condition for perfect recovery using OMP or
(20) for d = 1 (a.k.a. basis pursuit) is kd < (μ−1 + 1)/2. Since
μ ≥ μB, exploiting the block structure guarantees recovery for a
potentially higher sparsity level.

To formally state our results, suppose that x0 is a length-N block
k-sparse vector, and let y = Dx0 where D consists of blocks D[�]
with orthonormal columns. Let D0 denote the L × (kd) matrix
whose blocks correspond to the non-zero blocks of x0, and let D0

be the matrix of size L×(N −kd) which contains the columns of D

not in D0. We then have the following theorem proved in Section 5.

Theorem 2. Let x0 ∈ C
N be a block k-sparse vector with blocks of

length d, and let y = Dx0 for a given L×N matrix D. A sufficient
condition for the output of the BOMP and of (20) to equal x0 is that

ρc(D
†
0D0) < 1 (24)

where
ρc(A) = max

�

X
r

ρ(A[r, �]) (25)

and A[r, �] is the (r, �)th d × d block of A.

Note that

ρc(D
†
0D0) = max

�
ρc(D

†
0D0[�]). (26)

Therefore, (24) implies that for all �,

ρc(D
†
0D0[�]) < 1. (27)

The sufficient condition (24) depends on D0 and hence on the
location of the nonzero blocks in x0, which, of course, is not known
in advance. Nonetheless, as the following theorem shows, (24) holds
whenever the dictionary D has low block-coherence.

Theorem 3. [11] Let μB be the block-coherence defined in (5). Then
(24) is satisfied if

kd <
1

2
(μ−1

B + d). (28)

For d = 1, we recover the corresponding condition in [6, 7].

5. PROOF OF THEOREM 2

We start with some definitions. For x ∈ C
N , we define the general

mixed �2/�p norm (p = 1,∞ here and in the following):

‖x‖2,p = ‖v‖p, where v� = ‖x[�]‖2, (29)

and the x[�] are consecutive length-d blocks. For an L × N matrix
A with L = Rd and N = Md, where R and M are integers, we
define the mixed matrix norm (with block size d) as

‖A‖2,p = max
x

‖Ax‖2,p

‖x‖2,p
. (30)

The following lemma provides bounds on ‖A‖2,p, which we
will use in the sequel.
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Lemma 1. [11] Let A be an L × N matrix with L = Rd and
N = Md. Denote by A[�, r] the (�, r)th d × d block of A. Then,

‖A‖2,∞ ≤ max
r

X
�

ρ(A[r, �])
�
= ρr(A) (31)

‖A‖2,1 ≤ max
�

X
r

ρ(A[r, �])
�
= ρc(A). (32)

In particular, ρr(A) = ρc(A
H).

5.1. Block OMP

We begin by proving that (24) is sufficient to ensure recovery using
the BOMP algorithm.

We first show that if r�−1 is in R(D0), then the next chosen in-
dex i� will be correct, namely it will correspond to a block in D0.
Assuming that this is true, it follows immediately that i1 is correct
since clearly r0 = y lies in R(D0). Noting that r� lies in the space
spanned by y and D0[i], i ∈ I�, where I� denotes the indices cho-
sen up to stage �, it follows that if I� corresponds to correct indices,
i.e., D[i] is a block of D0 for all i ∈ I�, then r� also lies in R(D0)
and the next index will be correct as well. Thus, at every step a cor-
rect subset is selected. It is also clear that no index will be chosen
twice since the new residual is orthogonal to all the previously cho-
sen subspaces; consequently the correct x0 will be recovered in k
steps.

It therefore remains to show that if r�−1 ∈ R(D0), then under
(24) the next chosen index corresponds to a block in D0. This is
equivalent to requiring that

z(r�−1) =
‖DH

0 r�−1‖2,∞

‖DH
0 r�−1‖2,∞

< 1. (33)

From the properties of the pseudo-inverse, R(D0) = R(D0D
†
0),

and consequently D0D
†
0r�−1 = r�−1. Since D0D

†
0 is Hermitian,

(D†
0)

H
D

H
0 r�−1 = r�−1. (34)

Substituting (34) into (33) yields z(r�−1) =

‖DH
0 (D†

0)
HDH

0 r�−1‖2,∞

‖DH
0 r�−1‖2,∞

≤ ρr(D
H
0 (D†

0)
H) = ρc(D

†
0D0),

(35)
where we used Lemma 1. This completes the proof.

5.2. �2/�1 Optimization

We now show that (24) is also sufficient to ensure recovery using
(20). To this end we rely on the following lemma:

Lemma 2. [11] Suppose that v is a length N = Md vector with
‖v[�]‖2 > 0, ∀l, and that A is a matrix of size L × N , where L =
Rd and the blocks A[�, r] are of size d × d. Then, ‖Av‖2,1 ≤
ρc(A)‖v‖2,1. If, in addition, the values of ρc(AJ�) are not all
equal, then the inequality is strict. Here, J� is an N × d matrix
that is all zero except for the �th d × d block which equals Id.

To prove that (20) recovers the correct vector x0, let x′ be an-
other set of coefficients for which y = Dx′. Denote by c0 and c′

the length kd vectors consisting of the non-zero elements of x0 and
x′, respectively. Let D0 and D′ denote the corresponding columns
of D so that y = D0c0 = D′c′. From the assumption in Propo-
sition 1, it follows that there cannot be two different representations
using the same blocks D0. Therefore, D′ must contain at least one

block, Z, that is not included in D0. From (27), ρc(D
†
0Z) < 1. For

any other block U in D, we must have that

ρc(D
†
0U) ≤ 1. (36)

Indeed, if U ∈ D0, then U = D0[�] = D0J� where J� is a matrix
with d columns which is all zero, except for the �th block which is
equal to Id. In this case, D†

0D0[�] = J� and hence ρc(D
†
0D0[l]) =

ρc(D
†
0U) = 1. If, on the other hand, U = D[�] for some �, then it

follows from (27) that ρc(D
†
0U) < 1.

Now, suppose first that the blocks in D
†
0D

′ do not all have the
same spectral radius ρ. Then,

‖c0‖2,1 = ‖D†
0D0c0‖2,1 = ‖D†

0y‖2,1 = ‖D†
0D

′
c
′‖2,1

< ρc(D
†
0D

′)‖c′‖2,1 ≤ ‖c′‖2,1, (37)

where the first equality stems from the fact that the columns of
D0 are linearly independent (a consequence of the assumption in
Proposition 1), the first inequality follows from Lemma 2 since
‖c′[�]‖2 > 0, ∀l, and the last inequality follows from (36). If all
the blocks of D

†
0D

′ have identical spectral radius ρ, then ρ < 1 as
for Z ∈ D′, ρc(D

†
0Z) < 1. Repeating the calculations in (37), we

find that the first inequality is no longer strict. However, the second
inequality in (37) is strict instead so that the conclusion still holds.

Since ‖x0‖2,1 = ‖c0‖2,1 and ‖x′‖2,1 = ‖c′‖2,1, we conclude
that under (27), any set of coefficients used to represent the original
signal that is not equal to x0 will result in a larger �2/�1 norm.
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